
Administrator’s
Pocket Consultant

William R. Stanek
Author and Series Editor

Windows
PowerShell
2.0

™

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by William Stanek

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Library of Congress Control Number: 2009927478

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further
infor mation about international editions, contact your local Microsoft Corporation office or
contact Microsoft Press International directly at fax (425) 936-7329. Visit our Web site at
www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, DirectX, Halo, Halo Wars, MS, MSDN, Visual C#, Visual Studio,
Windows, Windows Live, Windows Media, Windows Vista, Xbox, Xbox 360, Xbox LIVE, XNA
and Zune are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or
should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is
provided without any express, statutory, or implied warranties. Neither the authors, Microsoft
Corporation, nor its resellers, or distributors will be held liable for any damages caused or alleged
to be caused either directly or indirectly by this book.

Acquisitions Editor: Martin DelRe
Developmental Editor: Karen Szall
Project Editor: Denise Bankaitis
Editorial Production: Macmillan Publishing Solutions
Technical Reviewer: Technical Reviewer: LJ Zacker; Technical Review services provided by
Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-58129

Contents at a Glance

Introduction xiii

CHAPTER 1 Introducing Windows PowerShell 1

CHAPTER 2 Getting the Most from Windows PowerShell 25

CHAPTER 3 Managing Your Windows PowerShell Environment 53

CHAPTER 4 Using Sessions, Jobs, and Remoting 85

CHAPTER 5 Navigating Core Windows PowerShell Structures 109

CHAPTER 6 Mastering Aliases, Functions, and Objects 167

CHAPTER 7 Managing Computers with Commands and Scripts 213

CHAPTER 8 Managing Roles, Role Services, and Features 237

CHAPTER 9 Inventorying and Evaluating Windows Systems 253

CHAPTER 10 Managing File Systems, Security, and Auditing 281

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking 309

CHAPTER 12 Managing and Securing the Registry 335

CHAPTER 13 Monitoring and Optimizing Windows Systems 361

CHAPTER 14 Fine-Tuning System Performance 409

Index 445

v

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction xiii

Chapter 1 Introducing Windows PowerShell 1

Getting Started with Windows PowerShell . 2

Running Windows PowerShell . 3

Using the Windows PowerShell Console 3

Using the Windows PowerShell ISE 5

Configuring Windows PowerShell Console Properties 7

Working with the Command History 8

Working with Cmdlets and Scripts . 9

Using Cmdlets 9

Using Cmdlet Parameters 14

Using External Commands 16

Using Scripts 17

Chapter 2 Getting the Most from Windows PowerShell 25

Initializing the Environment . 26

Passing Startup Parameters 26

Invoking Windows PowerShell 28

Using –Command to Run Commands 28

Using –File to Run Scripts 30

Using Nested Consoles 30

Understanding Command Input, Parsing, and Output 31

Basic Line Editing 31

How Parsing Works 33

Parsing Assigned Values 34

Parsing Exceptions 36

Output from Parsing 37

vi Contents

Writing and Formatting Output . 37

Using Formatting Cmdlets 38

Writing to Output Streams 45

Rendering and Finalizing the Output 49

More on Redirecting Input, Output, and Error 51

Chapter 3 Managing Your Windows PowerShell

Environment 53

Using Profiles . 53

Creating Profiles 55

Understanding Execution Order 56

Working with the Command Path 57

Navigating Windows PowerShell Extensions 60

Working with Windows PowerShell Extensions 60

Using Snap-ins 62

Using Providers 64

Navigating and Using Provider Drives 72

Using Modules 77

PowerShell Extensions for Exchange Server
and SQL Server 82

Chapter 4 Using Sessions, Jobs, and Remoting 85

Enabling Remote Commands . 85

Executing Remote Commands . 87

Understanding Remote Execution 88

Commands for Remoting 88

Invoking Remote Commands 92

Establishing Remote Sessions . 94

Invoking Sessions 94

Understanding Remote Execution and Object
Serialization 96

Establishing Remote Background Jobs . 97

Using Background Jobs 97

Starting Jobs in Interactive Sessions 100

Running Jobs Noninteractively 104

Working Remotely Without WinRM . 107

viiContents

Chapter 5 Navigating Core Windows PowerShell

Structures 109

Working with Expressions and Operators 109

Arithmetic, Grouping, and Assignment Operators 110

Comparison Operators 113

Other Operators 121

Working with Variables and Values . 122

Variable Essentials 123

Assigning and Converting Data Types 128

Managing Variable Scopes 135

Automatic, Preference, and Environment Variables 138

Working with Strings . 148

Single-Quoted and Double-Quoted Strings 148

Escape Codes and Wildcards 150

Multiline Strings 152

String Operators 154

Working with Arrays and Collections . 159

Creating and Using One-Dimensional Arrays 160

Using the Cast Array Structure 162

Assigning and Removing Values 163

Using Strict Types in Arrays 164

Using Multidimensional Arrays 165

Chapter 6 Mastering Aliases, Functions, and Objects 167

Creating and Using Aliases . 168

Using the Built-In Aliases 168

Creating Aliases 172

Importing and Exporting Aliases 174

Creating and Using Functions . 175

Creating Functions 175

Using Extended Functions 177

Using Filter Functions 178

Digging Deeper into Functions 179

Examining Function Definitions 181

Using the Built-In Functions 181

viii Contents

Working with Objects . 185

Object Essentials 185

Object Methods and Properties 188

Object Types 190

Digging Deeper into Objects 194

Working with COM and .NET Framework Objects 197

Creating and Using COM Objects 197

Working with .NET Framework Classes and Objects 202

Working with WMI Objects and Queries . 206

Chapter 7 Managing Computers with Commands

and Scripts 213

Getting More from Your Scripts and Profiles 213

Creating Transcripts . 216

Creating Transactions . 217

Understanding Transactions 217

Using Transactions 220

Common Elements in Scripts . 222

Using Comments and Initializing Statements 222

Using Conditional Statements 225

Using Control Loops 231

Chapter 8 Managing Roles, Role Services, and Features 237

Server Manager Essentials . 238

Server Manager Commands 238

Available Roles and Role Services 239

Available Features 242

Checking Installed Roles, Role Services, and Features 245

Installing Roles, Role Services, and Features 247

Adding Roles, Role Services, and Features 247

Handling Configuration Errors and Other Issues 249

Uninstalling Roles, Role Services, and Features 250

Removing Roles, Role Services, and Features 250

Handling Removal Errors and Other Issues 252

ixContents

Chapter 9 Inventorying and Evaluating Windows

Systems 253

Getting Basic System Information . 253

Determining the Current User, Domain,
and Computer Name 254

Determining and Setting the Date and Time 255

Specifying Authentication Credentials 257

Examining the System Configuration and
the Working Environment. 257

Determining Windows Updates and Service Packs 258

Obtaining Detailed System Information 261

Determining Available Users and Groups 265

Evaluating System Hardware . 267

Checking Firmware Versions and Status 267

Checking Physical Memory and Processors 269

Checking Hard Disks and Partitions 271

Checking and Managing Device Drivers 275

Digging In Even More 279

Chapter 10 Managing File Systems, Security, and Auditing 281

Managing PowerShell Drives, Directories, and Files 281

Adding and Removing PowerShell Drives 282

Creating and Managing Directories and Files 283

Working with File Contents . 286

Commands for Managing File Contents 286

Reading and Writing File Content 288

Accessing Security Descriptors . 289

Commands for Working with Security Descriptors 289

Getting and Setting Security Descriptors 289

Working with Access Rules 293

Configuring File and Directory Permissions 296

Setting Basic Permissions 296

Setting Special Permissions 300

Taking Ownership 304

Configuring File and Directory Auditing . 305

x Contents

Chapter 11 Managing Shares, Printers, and TCP/IP

Networking 309

Managing Network Shares . 309

Getting Information About Shares 310

Changing Share Settings 311

Creating Shares 313

Deleting Shares 314

Managing Printers . 314

Getting Information About Printers 315

Checking Printer Drivers 317

Managing Printer Connections 318

Managing TCP/IP Networking . 319

Getting Information About Network Adapters 319

Configuring Static IP Addressing 323

Configuring Dynamic IP Addressing 326

Configuring Windows Firewall . 328

Viewing and Managing Windows Firewall Settings 328

Adding and Removing Firewall Ports 333

Chapter 12 Managing and Securing the Registry 335

Understanding Registry Keys and Values. 336

Navigating the Registry . 338

Managing Registry Keys and Values . 341

Creating Registry Keys and Values 342

Copying Registry Keys and Values 343

Moving Registry Keys and Values 344

Renaming Registry Keys and Values 344

Deleting Registry Keys and Values 345

Comparing Registry Keys . 346

Viewing and Managing Registry Security Settings 347

Getting and Setting Registry Security Descriptors 348

Working with Registry Access Rules 350

Configuring Registry Permissions 351

Taking Ownership of Registry Keys 356

Auditing the Registry . 357

xiContents

Chapter 13 Monitoring and Optimizing Windows Systems 361

Managing Windows Events and Logs . 361

Working with Event Logs 362

Viewing and Filtering Event Logs 366

Setting Log Options 369

Archiving and Clearing Event Logs 370

Writing Custom Events to the Event Logs 371

Creating and Using Saved Queries 374

Managing System Services . 375

Viewing Configured Services 378

Starting, Stopping, and Pausing Services 380

Configuring Service Startup 382

Managing Service Logon and Recovery Modes 383

Digging Deeper into Service Management 388

Managing Computers . 395

Commands for Managing Computers 395

Renaming Computer Accounts 398

Joining Computers to a Domain 398

Adding Computers to a Workgroup 400

Removing Computers from Domains
and Workgroups 401

Managing the Restart and Shutdown
of Computers 402

Creating and Using System Restore Checkpoints 403

Commands for Configuring System Restore 404

Enabling and Disabling System Restore 406

Creating and Using Checkpoints 406

Recovering from Restore Points 408

Chapter 14 Fine-Tuning System Performance 409

Managing Applications, Processes, and Performance 409

Understanding System and User Processes 411

Examining Running Processes 412

Filtering Process Output 418

Viewing the Relationship Between Running
Processes and Services 420

xii Contents

Viewing Lists of DLLs Being Used by Processes 421

Stopping Processes 424

Digging Deeper into Processes 425

Performance Monitoring . 430

Understanding Performance Monitoring Commands 430

Tracking Performance Data 431

Detecting and Resolving Performance Issues Through
Monitoring . 436

Monitoring System Resource Usage and Processes 436

Monitoring Memory Paging and Paging to Disk 438

Monitoring Memory Usage and the Working
Memory Set for Individual Processe 440

Index 445

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our

books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xiii

Introduction

Windows PowerShell 2.0 Administrator’s Pocket Consultant is designed to be
a concise and compulsively usable resource for Windows administrators,

 developers, and programmers, and for anyone else who wants to use Windows
 PowerShell Version 2.0 to control and configure computers. This is the readable
resource guide that you’ll want on your desk or in your pocket at all times. The
book discusses everything you need to perform the core administrative tasks
 using Windows PowerShell. Because the focus is directed to providing you with the
 maximum value in a pocket-sized guide, you don’t have to wade through hundreds
of pages of extraneous information to find what you’re looking for. Instead, you’ll
find exactly what you need to get the job done.

In short, the book is designed to be the one resource you consult whenever you
have questions regarding administration of computers using Windows PowerShell.
To this end, the book concentrates on daily administration procedures, frequently
used tasks, documented examples, and options that are representative but not
necessarily inclusive. One of the goals is to keep the content so concise that the
book remains compact and easy to navigate while ensuring that the book is packed
with as much information as possible—making it a valuable resource. Thus, instead
of a hefty 1,000-page tome or a lightweight 100-page quick reference, you get a
valuable resource guide that can help you quickly and easily perform common tasks,
solve problems, and implement such advanced administration areas as automated
monitoring, performance tracking, network troubleshooting, security management,
and remote configuration.

Who Is This Book For?

Windows PowerShell 2.0 Administrator’s Pocket Consultant covers Windows
 PowerShell Version 2.0. The book is designed for:

 Current Windows administrators

 Support staff who maintain Windows systems

 Accomplished users who have some administrator responsibilities

 Administrators upgrading to Windows PowerShell 2.0 from previous versions

To pack in as much information as possible, I had to assume that you have
basic networking skills and a basic understanding of Windows, and that Windows
PowerShell is already installed on your systems. With this in mind, I don’t devote
entire chapters to understanding Windows architecture or installing Windows
PowerShell. I do, however, cover using PowerShell to modify security descriptors,

xiv Introduction

manage domain membership, create restore checkpoints, configure event logging,
and much more.

I also assume that you are fairly familiar with Windows commands and
 procedures as well as the Windows command line. If you need help learning the
Windows basics, you should read the Windows documentation.

How Is This Book Organized?

Windows PowerShell 2.0 Administrator’s Pocket Consultant is designed to be used in
the daily administration of Windows computers, and as such, the book is organized
by job-related tasks rather than by Windows features. Speed and ease of reference is
an essential part of this hands-on guide. The book has an expanded table of contents
and an extensive index for finding answers to problems quickly. Many other quick-
reference features have been added as well. These features include quick step-by-step
instructions, lists, tables with fast facts, and extensive cross-references.

Chapter 1 provides an overview of PowerShell administration tools, techniques,
and concepts. You’ll learn about the graphical interface for PowerShell as well as
the command-line interface. Chapter 2 is designed to help you get the most out
of PowerShell. It details techniques for starting up the PowerShell console using
parameters, how to run scripts, what formatting options are available, and how to
use multiple commands in sequences.

Windows provides many PowerShell commands to help in the management of
daily operations. Chapter 3 explores profiles and how the working environment
is loaded. You’ll also learn about techniques for extending PowerShell, including
snap-ins that add providers to the working environment and module extensions that
must be imported prior to use. Chapter 4 discusses remote execution of commands,
remote sessions, and remote background jobs. When you work remotely, you type
commands in Windows PowerShell on your computer but execute the commands on
one or more remote computers. Chapter 5 examines the core structures you’ll use
to put PowerShell to work. You’ll learn how to set variables, work with expressions,
and manage strings, arrays, and collections. Chapter 6, focuses on aliases, functions,
and objects. Whenever you work with PowerShell, you’ll use aliases, functions, and
objects to help you do more with less and to help you use PowerShell to perform any
conceivable administrative task.

Chapter 7 tells you how to get more from your scripts, profiles, and commands.
You’ll learn how to create transcripts and transactions. You’ll also learn about con-
trol loops and conditional statements. Chapter 8 discusses how to manage server
roles, role services, and features of Windows using PowerShell. Chapter 9 examines
techniques you can use to inventory your computers and evaluate hardware configu-
rations. You’ll also learn how to determine whether there are issues that need your
attention. In Chapter 10, you learn techniques for managing file systems, security,
and auditing. Because you are working with PowerShell, it’s just as easy to manipulate
multiple directories and files as it is to work with individual directories and files.

xvIntroduction

Chapter 11 explores how you can control and configure network shares, printers,
and TCP/IP networking. Chapter 12 discusses managing and securing the registry.
You’ll learn how to read and write registry values, how to view and set the access
control lists, and how to configure registry auditing. In Chapter 13, you’ll learn
about tools and techniques for monitoring computers and optimizing performance.
Finally, Chapter 14 details how to fine-tune system performance. You’ll also learn
techniques that can help you identify and correct system problems.

Conventions Used in This Book

I’ve used a variety of elements to help keep the text clear and easy to follow. You’ll
find code terms and listings in monospace type, except when I tell you to actually
type a command. In that case, the command appears in bold type. When I introduce
and define a new term, I put it in italics.

Other conventions include:

 Best Practices To examine the best technique to use when working with
advanced configuration and administration concepts

 Cautions To warn you when there are potential problems you should look
out for

 Notes To provide details on a point that needs emphasis

 More Info To provide more information on the subject

 Real World To provide real-world advice when discussing advanced topics

 Security Alerts To point out important security issues

 Tips To offer helpful hints or additional information

I truly hope you find that Windows PowerShell2.0 Administrator’s Pocket
 Consultant provides everything that you need to perform essential administrative
tasks as quickly and efficiently as possible. You’re welcome to send your thoughts to
me at williamstanek@aol.com. Thank you.

Find Additional Content Online

As new or updated material becomes available that complements this book, it
will be posted online on the Microsoft Press Online Windows Server and Client
Web site. The type of material you might find includes updates to book content,
articles, links to companion content, errata, sample chapters, and more. This Web
site is available at http://microsoftpresssrv.libredigital.com/serverclient/ and is
updated periodically. You’ll also find discussion about the book on my Web site,
www.williamstanek.com, and you can follow me on Twitter at WilliamStanek.

xvi Introduction

Support

Every effort has been made to ensure the accuracy of this book. Microsoft Press
provides corrections for books through the World Wide Web at the following
 address:

http://www.microsoft.com/mspress/support

If you have comments, questions, or ideas about this book, please send them to
Microsoft Press using either of the following methods:

Postal Mail:

Microsoft Press
Attn: Editor, Windows PowerShell 2.0 Administrator’s Pocket Consultant
One Microsoft Way
Redmond, WA 98052-6399

E-mail:

mspinput@microsoft.com

Please note that product support isn’t offered through these mail addresses. For
support information, visit Microsoft’s Web site at http://support.microsoft.com/.

1

CHAP TER 1

Introducing Windows
PowerShell

Getting Started with Windows PowerShell 2

Running Windows PowerShell 3

Working with Cmdlets and Scripts 9

Chances are that if you’re an IT professional you’ve heard of Windows
Power Shell. You may even have read other books about PowerShell and

put Power Shell to work. However, you probably still have many questions about
PowerShell, or you may simply be curious about what Windows PowerShell
version 2.0 (PowerShell V2) has to offer that its predecessor, Windows PowerShell
Version 1.0 (PowerShell V1), didn’t. After all, the title of this book is Windows
PowerShell 2.0 Administrator’s Pocket Consultant.

Every version of Windows has had a built-in command line that is used to run
built-in commands, utilities, and scripts. Windows PowerShell extends the command
line in new and exciting ways, opening the operating system in ways that were
previously possible only with extensive programming. Whether you are an admin-
istrator, developer, programmer, or other IT professional, you can use PowerShell
to control and configure computers running Windows-based operating systems,
and that’s what I’ll teach you in this book.

This chapter focuses on Windows PowerShell essentials. You’ll learn how to use
PowerShell, how to run commands, and how to work with related features. For
proficient Windows administrators, skilled support staff, and committed power
users, Windows PowerShell will become increasingly indispensible. Knowing how
to use PowerShell properly can save you time and effort and can mean the dif-
ference between smooth-running operations and frequent problems. Moreover,
if you’re responsible for multiple computers, learning the timesaving strategies

 CHAPTER 1 Introducing Windows PowerShell 2

that PowerShell offers is not just important, it’s essential for sustaining day-to-day
operations.

REAL WORLD In general, you can use techniques that you learn in this book on all

versions of Windows on which you can install Windows PowerShell V2. However, some

features, like remoting and background jobs, don’t work on all platforms. For this reason,

when you are working across operating systems, you should always test commands,

options, and scripts in a development or test environment, where the computers with

which you are working are isolated from the rest of the network, before using them in

live production environments.

Getting Started with Windows PowerShell

Anyone with a background in UNIX is probably familiar with the concept of a
command shell. Most UNIX -based operating systems have several full-featured
command shells available, including Korn Shell (KSH), C Shell (CSH), and Bourne
Shell (SH). Although Windows operating systems have always had a command-line
environment, they’ve lacked a full-featured command shell, and this is where
Windows PowerShell comes into the picture.

Not unlike the less sophisticated Windows command prompt, the UNIX com-
mand shells operate by executing built-in commands, external commands, and
command-line utilities and then returning the results in an output stream as text.
The output stream can be manipulated in various ways, including redirecting it so
that it can be used as input for another command. The process of redirecting one
command’s output to another command’s input is called piping, and it is a widely
used shell-scripting technique.

The C Shell is one of the more sophisticated UNIX shells. In many respects, C Shell
is a marriage of some of the best features of the C programming language and a
full-featured UNIX shell environment. Windows PowerShell takes the idea of a full-
featured command shell built on a programming language a step further. It does
this by implementing a scripting language based on C# and an object model based
on the Microsoft .NET Framework.

Basing the scripting language for Windows PowerShell on C# ensures that the
scripting language can be easily understood by current C# developers and also
allows new developers to advance to C#. Using an object model based on the
.NET Framework allows Windows PowerShell to pass complete objects and all their
properties as output from one command to another. The ability to redirect objects
is extremely powerful and allows for a much more dynamic manipulation of result
sets. For example, you can get not only the name of a particular user but also the
entire related user object. You can then manipulate the properties of this user object
by referring to the properties you want to work with by name.

 Introducing Windows PowerShell CHAPTER 1 3

Running Windows PowerShell

Windows PowerShell V2 is an enhanced and extended edition of the original
implementation of PowerShell. The changes are dramatic, and they improve both
the performance capabilities of PowerShell and its versatility. You can do things
with PowerShell V2 that you simply could not do with PowerShell V1, and you can
perform standard tasks in much more efficient ways than before. The discussion
that follows explores PowerShell options and configurations and also provides tips
for using the command history.

Using the Windows PowerShell Console

Windows PowerShell Version 2.0 (PowerShell V2) is built into Windows 7, Windows
Server 2008 Release 2, and later releases of the Windows operating system. Also,
you can install PowerShell V2 on computers running Windows XP, Windows Server
2003, Windows Vista, and Windows Server 2008. Different builds are available for
each version of Windows, in 32-bit and 64-bit editions, at the Microsoft Download
Center (http://download.microsoft.com).

Windows PowerShell V2 has both a command-line environment and a
graphical environment for running commands and scripts. The PowerShell
 console (powershell.exe) is a 32-bit or 64-bit environment for working with
PowerShell at the command line. On 32-bit versions of Windows, you’ll find the
32-bit executable in the %SystemRoot%\System32\WindowsPowerShell\v1.0
 directory. On 64-bit versions of Windows, you’ll find the 32-bit executable in the
%SystemRoot%\SysWow64\WindowsPowerShell\v1.0 directory and the 64-bit
executable in the %SystemRoot%\System32\WindowsPowerShell\v1.0 directory.

NOTE %SystemRoot% refers to the SystemRoot environment variable. The Windows

operating system has many environment variables, which are used to refer to user-

specific and system-specific values. I’ll often refer to environment variables using the

standard Windows syntax %VariableName%.

REAL WORLD Windows PowerShell V2 depends on the .NET Framework. Your

computers need to run at least .NET Framework 2.0 to use core PowerShell features.

Only computers running Windows Vista and later support the advanced features in

PowerShell V2, and they need to be running .NET Framework 3.5.1 or later to do so.

You can start the PowerShell console by using the Search box on the Start menu.
Click Start, type powershell in the Search box, and then press Enter. Or, you can
click Start, point to All Programs, point to Accessories, Windows PowerShell, and
then choose Windows PowerShell V2. On 64-bit systems, the 64-bit version of
Power Shell is started by default. If you want to use the 32-bit PowerShell console on
a 64-bit system, you must select the Windows PowerShell V2 (x86) option.

CHAPTER 1 Introducing Windows PowerShell 4

You can start Windows PowerShell from a Windows command shell (cmd.exe) by
entering the following:

powershell

Figure 1-1 shows a PowerShell window. By default, the window is 120 characters
wide and displays 50 lines of text. When additional text is to be displayed in the
window or you enter commands and the PowerShell console’s window is full, the
current text is displayed in the window, and prior text is scrolled up. If you want
to pause the display temporarily when a command is writing output, press Ctrl+S.
Afterward, press Ctrl+S to resume or Ctrl+C to terminate execution.

FIGURE 1-1 When you work with PowerShell, you’ll frequently use the command-line environment.

In this fi gure from Windows 7, the display text is:

Windows PowerShell V2

Copyright (c) 2008 Microsoft Corporation. All rights reserved.

PS C:\Users\wrstanek>

Here, the command prompt for the PowerShell shows the current working direc-
tory preceded by PS, which by default is %UserProfi le%, meaning the user profi le
directory for the current user. A blinking cursor following the command prompt
indicates that PowerShell is in interactive processing mode. In interactive mode, you
can type commands directly after the prompt and press Enter to execute them. For
example, type get-childitem and then press Enter to get a listing of the current
directory.

Windows PowerShell also has a noninteractive processing mode, which is used
when executing a series of commands. In noninteractive processing mode, Power-
Shell reads and executes commands one by one but doesn’t present a prompt to the
user. Typically, commands are read from a script fi le, but you can start the Power-
Shell console in noninteractive processing mode.

To exit PowerShell, type exit. If you started PowerShell from a command prompt,
typing exit will return you to the command prompt. If you want to run a separate
instance of PowerShell from within PowerShell, you also can type powershell at the

powershell

Windows PowerShell V2

Copyright (c) 2008 Microsoft Corporation. All rights reserved.

PS C:\Users\wrstanek>

 Introducing Windows PowerShell CHAPTER 1 5

PowerShell prompt. Invoking PowerShell in this way allows you to use a separate
session and initialize PowerShell with specifi c parameters.

Using the Windows PowerShell ISE

 The offi cial name of the graphical environment for Windows PowerShell is the
Windows PowerShell Integrated Scripting Environment (ISE). Using the PowerShell
application (powershell_ise.exe), you can run commands and write, run, and debug
scripts in a single integrated interface. There are 32-bit and 64-bit graphical envi-
ronments for working with PowerShell, and you’ll fi nd the related executables in the
same location as the PowerShell console.

 You can start the PowerShell application by using the Search box on the Start
menu. Click Start, type powershell in the Search box, and then click the version
of the PowerShell application you want to run. Or, you can click Start, point to All
Programs, point to Accessories, Windows PowerShell, and then choose Windows
PowerShell V2 ISE. On 64-bit systems, the 64-bit version of the PowerShell ISE is
started by default. If you want to use the 32-bit application on a 64-bit system, you
must select the Windows PowerShell V2 ISE (x86) option.

 You can start the PowerShell application from a command prompt (cmd.exe) by
entering:

powershell_ise

 Figure 1-2 shows the main window for the PowerShell application. By default, the
main window displays the Script pane, the Command pane, and the Output pane. In
the Script pane, you can type the commands and text for PowerShell scripts. In the
Command pane, you can enter commands at a prompt as you would using the Power-
Shell console. The Output pane shows you the results of running scripts or commands.

 As you enter text into the Script or Command panes, the text is color coded
depending on whether it is a cmdlet, function, variable, or other type of text. Options
on the View menu allow you to control the view panes. Select Show Script Pane to
display the Script pane if it is hidden. Select the option again to hide the Script pane
if it is displayed. When the Script pane is displayed, you can select Script Pane Right
to display the Script pane on the right rather than at the top of the main window.
Select the option again to restore the original position. If you prefer that the
Command pane be displayed above the Output pane, select Command Pane Up.
The organization I prefer is with the Command pane up and the Script pane on the
right (see Figure 1-3). This arrangement helps me keep the purpose of the windows
clear as I work. You can resize the panes by clicking and dragging as well.

 The PowerShell application supports multiple execution environments called
 sessions, where each session has its own working environment. By default, the
Power Shell application starts with a single session, but you can add up to seven
other sessions for a total of eight. You add a session by pressing Ctrl+T or by selecting
New PowerShell Tab from the File menu.

powershell_ise

 CHAPTER 1 Introducing Windows PowerShell 6

FIGURE 1-2 When you work with PowerShell ISE, you’ll frequently use the command-line
environment.

FIGURE 1-3 Use the tabs provided to toggle between sessions.

 Introducing Windows PowerShell CHAPTER 1 7

The default text size is fairly small. You can change the text size by using the
Zoom slider in the lower-right corner of the main window. Alternatively, press
Ctrl and+ to increase the text size, or press Ctrl and – to decrease the text size.

To close a session, press Ctrl+W or select the related Close option on the File
menu. To exit the PowerShell application, press Alt+F4 or select the Exit option on
the File menu. You can also exit by typing exit at the PowerShell prompt in the
Command pane.

Configuring Windows PowerShell Console Properties

If you use the Windows PowerShell console frequently, you’ll definitely want to
customize its properties. For example, you can add buffers so that text scrolled out
of the viewing area is accessible. You can resize the console, change its fonts, and
more.

To get started, click the PowerShell prompt icon at the top of the console window
or right-click the console’s title bar and then select Properties. As Figure 1-4 shows,
the Properties dialog box has four tabs:

 Options Allows you to configure cursor size, display options, edit options,
and command history. Select QuickEdit Mode if you want to use a single
mouse click to paste copied text into the PowerShell window. Clear QuickEdit
Mode if you want to right-click and then select Paste to insert copied text.
Clear Insert Mode to overwrite text as the default editing mode. Use the
command history to configure how previously used commands are buffered
in memory. (You’ll find more information about the command history in the
next section of this chapter, “Working with the Command History.”)

 Font Allows you to set the font size and face used by the PowerShell
prompt. Raster font sizes are set according to their pixel width and height.
For example, the size 8 12 is 8 screen pixels wide and 12 screen pixels high.
Other fonts are set by point size, such as 10-point Lucida Console. Interest-
ingly, when you select a point size of n, the font will be n pixels high; there-
fore, a 10-point font is 10 screen pixels high. These fonts can be designated
as a bold font type as well, which increases their screen pixel width.

 Layout Allows you to set the screen buffer size, window size, and window
position. Size the buffer height so that you can easily scroll back through
previous listings and script output. A good setting is in the range of 2,000 to
3,000. Size the window height so that you can view more of the PowerShell
window at one time. A good setting is 60 lines on screens set to 1280 1024
resolution with a 12-point font. If you want the PowerShell window to be in
a specific screen position, clear Let System Position Window and then specify
a position, in pixels, for the upper-left corner of the PowerShell window by
using Left and Top.

 Colors Allows you to set the text and background colors used by the
PowerShell console. Screen Text and Screen Background control the respec-
tive color settings for the window. The Popup Text and Popup Background

 CHAPTER 1 Introducing Windows PowerShell 8

options control the respective color settings for any pop-up dialog boxes
generated when running commands at the PowerShell prompt.

FIGURE 1-4 Configure PowerShell console properties for your environment.

When you are finished updating the window properties, click OK to save your
settings to your user profile. Your settings modify only the shortcut that started
the current window. Any time you start PowerShell using the applicable shortcut,
PowerShell will use these settings. If, however, you start PowerShell using a different
shortcut, you’ll have the settings associated with that shortcut.

Working with the Command History

The command history buffer is a feature of Windows PowerShell that stores
 commands you’ve used in the current session and allows you to access them
 without having to retype the command text. The maximum number of commands
to buffer is set through the PowerShell Properties dialog box discussed in the
 previous section. By default, up to 50 commands are stored.

You can change the history size by completing these steps:

 1. Right-click the PowerShell console’s title bar, select Properties, and then click
the Options tab.

 2. Use the Buffer Size field to set the maximum number of commands to store
in the history, and then click OK to save your settings to your user profile.

Your settings modify only the shortcut that started the current window. Any time
you start a PowerShell using the applicable shortcut, it will use these settings. If,

 Introducing Windows PowerShell CHAPTER 1 9

however, you start a PowerShell using a different shortcut, you’ll have the settings
associated with that shortcut.

You can access commands stored in the history in the following ways:

 Browsing with the arrow keys Use the up arrow and down arrow keys to
move up and down through the list of buffered commands. When you find
the command you want to use, press Enter to execute it as entered previ-
ously, or you can modify the command text displayed by adding or changing
parameters and then pressing Enter.

 Browsing the command history pop-up window Press F7 to display a
pop-up window that contains a listing of buffered commands. Next, select
a command using the arrow keys. (Alternatively, press F9, press the corre-
sponding number on the keyboard, and then press Enter.) Execute the se-
lected command by pressing Enter, or press Esc to close the pop-up window
without executing a command.

 Searching the command history Enter the first few letters of the command
you want to execute, and then press F8. PowerShell searches through the
history for the first command that begins with the characters you entered.
Press Enter to execute it, or press F8 again to search the history buffer for the
next match in the command history.

As you work with the command history, keep in mind that each instance of
Windows PowerShell has its own set of command buffers. Thus, buffers are valid
only in the related PowerShell context.

Working with Cmdlets and Scripts

Windows PowerShell introduces the concept of a cmdlet (pronounced commandlet).
A cmdlet is the smallest unit of functionality in Windows PowerShell. You can think
of a cmdlet as a built-in command. Rather than being highly complex, most cmdlets
are quite simple and have a small set of associated properties.

Using Cmdlets

You use cmdlets the same way you use any other commands and utilities. Cmdlet
names are not case sensitive. This means you can use a combination of both
uppercase and lowercase characters. After starting Windows PowerShell, you can
enter the name of the cmdlet at the prompt, and it will run in much the same way
as a command-line command.

For ease of reference, cmdlets are named using verb-noun pairs. As Table 1-1
shows, the verb tells you what the cmdlet does in general. The noun tells you
what specifically the cmdlet works with. Verbs and nouns are always separated
by a hyphen with no spaces. For example, the Get-Variable cmdlet gets a named
Windows PowerShell variable and returns its value. If you don’t specify which variable

 CHAPTER 1 Introducing Windows PowerShell 10

to get as a parameter, Get-Variable returns a list of all PowerShell variables and their
values.

TABLE 1-1 Common Verbs Used with Cmdlets

CMDLET VERB USAGE

Add Adds an instance of an item, such as a history entry or
snap-in.

Clear Removes the contents of an item, such as an event log or
variable value.

ConvertFrom Converts an item from one format to another, such as
converting from a list of comma-separated values to
object properties.

ConvertTo Converts an item to a particular format, such as converting
object properties to a list of comma-separated values.

Disable Disables an enabled setting, such as disabling remote
 connections.

Enable Enables a disabled setting, such as enabling remote
 connections.

Export Exports an item’s properties in a particular format, such as
exporting console properties in XML format.

Get Queries a specific object or a subset of a type of object,
such as getting a list of running processes.

Import Imports an item’s properties from a particular format, such
as importing console properties from serialized XML.

Invoke Executes an instance of an item, such as an expression.

New Creates a new instance of an item, such as a new variable
or event.

Remove Removes an instance of an item, such as a variable or
event.

Set Modifies specific settings of an object.

Start Starts an instance of an item, such as a service or process.

Stop Stops an instance of an item, such as a service or process.

Test Tests an instance of an item for a specific state or value,
such as testing a connection to see if it is valid

Write Performs a write operation on an instance of an item, such
as writing an event to the system event log.

 Introducing Windows PowerShell CHAPTER 1 11

Table 1-2 provides a list of cmdlets you’ll commonly use for administration.
Although many other cmdlets are available, these are the ones you’re likely to use
the most.

TABLE 1-2 Cmdlets Commonly Used for Administration

CMDLET NAME DESCRIPTION

Add-Computer, Remove-Computer Adds or removes a computer’s member-
ship in a domain or workgroup.

Checkpoint-Computer,
 Restore-Computer

Creates a system restore checkpoint for a
computer or restores a computer from a
checkpoint.

Compare-Object, Group-Object,
Sort-Object, Select-Object,
 New-Object

Cmdlets for comparing, grouping, sorting,
selecting, and creating objects.

ConvertFrom-SecureString,
 ConvertTo-SecureString

Cmdlets for creating or exporting secure
strings.

Debug-Process Debugs a process running on a computer.

Get-Alias, New-Alias, Set-Alias,
Export-Alias, Import-Alias

Cmdlets for getting, creating, setting,
exporting, and importing aliases.

Get-AuthenticodeSignature,
 Set-AuthenticodeSignature

Cmdlets for getting or setting the
 signature object associated with a file.

Get-Command, Invoke-Command,
Measure-Command, Trace-Command

Cmdlets for getting information about
cmdlets, invoking commands, measuring
the run time of commands, and tracing
commands.

Get-Counter Gets performance counter data.

Get-Credential Gets a credential object based on a
 password.

Get-Date, Set-Date Gets or sets the current date and time.

Get-EventLog, Write-EventLog,
 Clear-EventLog

Gets events, writes events, or clears events
in an event log.

Get-ExecutionPolicy,
 Set-ExecutionPolicy

Gets or sets the effective execution policy
for the current shell.

Get-Host Gets information about the PowerShell
host application.

Get-HotFix Gets the hotfixes and other updates that
have been applied to a computer.

 CHAPTER 1 Introducing Windows PowerShell 12

TABLE 1-2 Cmdlets Commonly Used for Administration

CMDLET NAME DESCRIPTION

Get-Location, Set-Location Displays or sets the current working
 location.

Get-Process, Start-Process, Stop-
Process

Gets, starts, or stops processes on a
 computer.

Get-PSDrive, New-PSDrive, Remove-
PSDrive

Gets, creates, or removes a specified
 PowerShell drive.

Get-Service, New-Service, Set-Service Gets, creates, or sets system services.

Get-Variable, New-Variable, Set-Vari-
able, Remove-Variable, Clear-Variable

Cmdlets for getting, creating, setting, and
removing variables as well as for clearing
variable values.

Import-Counter, Export-Counter Imports or exports performance counter
log files.

Limit-EventLog Sets the size and age limits for an event
log.

New-EventLog, Remove-EventLog Creates or removes a custom event log
and event source

Ping-Computer Sends Internet Control Message Protocol
(ICMP) request packets to designated
 computers.

Pop-Location Obtains a pushed location from the stack.

Push-Location Pushes a location to the stack

Read-Host, Write-Host, Clear-Host Reads input from, writes output to, or
clears the host window.

Rename-Computer, Stop-Computer,
Restart-Computer

Renames, stops, or restarts a computer.

Reset-ComputerMachinePassword Changes and resets the machine account
password that the computer uses to
 authenticate in a domain.

Show-EventLog Displays a computer’s event logs in Event
Viewer.

Show-Service Displays a computer’s services in the
 Services utility.

Start-Sleep Suspends shell or script activity for the
specified period.

 Introducing Windows PowerShell CHAPTER 1 13

 TABLE 1-2 Cmdlets Commonly Used for Administration

 CMDLET NAME DESCRIPTION

 Stop-Service, Start-Service, Suspend-
Service, Resume-Service, Restart-
Service

Cmdlets for stopping, starting, suspending,
resuming, and restarting system services.

 Wait-Process Waits for a process to be stopped before
accepting input.

 Write-Output Writes an object to the pipeline.

 Write-Warning Displays a warning message.

 You can work with cmdlets by executing them directly at the PowerShell prompt
or by running commands from within scripts. At the Windows PowerShell prompt,
you can get a complete list of cmdlets available by typing get-command. However,
the output lists both cmdlets and functions by name and defi nition. With cmdlets,
the defi nition provided is the syntax, but the full syntax rarely fi ts on the line. More
often, you simply want to know if a cmdlet exists. You can display a formatted list of
cmdlets by entering the following command:

get-command | format-wide –column 3

 This command shows many of the features of PowerShell that you’ll use regu-
larly at the command line. The | symbol is called a pipe. Here, you pipe the output
of Get-Command to Format-Wide. Format-Wide takes the output and formats it
in multiple columns. The default number of columns is two, but here we used the
–Column parameter to specify that we wanted to format the output into three
 columns, as shown in this example:

A: Add-Computer Add-Content

Add-History Add-Member Add-PSSnapin

Add-Type B: C:

cd.. cd\ Checkpoint-Computer

Clear-Content Clear-EventLog Clear-History

Clear-Host Clear-Item Clear-ItemProperty

Clear-Variable Compare-Object Complete-Transaction

Connect-WSMan ConvertFrom-Csv ConvertFrom-SecureString

 A better way to get information about cmdlets is to use Get-Help. If you enter
get-help *-*, you get a list of all cmdlets, which includes a synopsis that summarizes
the purpose of the cmdlet—much more useful than a list of commands.

 Rather than list all commands, you can list specifi c commands by name or by
using wildcards. For example, if you know the command you are looking for begins
with Get, enter get-help get* to view all commands that start with Get. If you know
the command includes the word computer, you could enter get-help *computer*

get-command | format-wide –column 3

A: Add-Computer Add-Content

Add-History Add-Member Add-PSSnapin

Add-Type B: C:

cd.. cd\ Checkpoint-Computer

Clear-Content Clear-EventLog Clear-History

Clear-Host Clear-Item Clear-ItemProperty

Clear-Variable Compare-Object Complete-Transaction

Connect-WSMan ConvertFrom-Csv ConvertFrom-SecureString

CHAPTER 1 Introducing Windows PowerShell 14

to view all commands that included this keyword. Finally, if you are looking for
 related commands on a specifi c subject, such as aliases, enter get-help * and then
the keyword, such as get-command *alias.

 When you work with cmdlets, you’ll encounter two standard types of errors:

 Terminating errors Errors that halt execution

 Nonterminating errors Errors that cause error output to be returned but
do not halt execution

 With both types of errors, you’ll typically see error text that can help you resolve
the problem that caused it. For example, an expected fi le might be missing or you
may not have suffi cient permissions to perform a specifi ed task.

 To help you examine cmdlet syntax and usage, Windows PowerShell provides
three levels of Help documentation: standard, detailed, and full. To view the
standard Help documentation for a specifi c cmdlet, type get-help followed by the
cmdlet name, such as:

get-help new-variable

 The standard Help documentation provides the complete syntax for using a
 cmdlet, which includes details on any parameters the cmdlet supports and examples.
You can get detailed information about a cmdlet by adding the –Detailed parameter.
Or you can get full technical information about a cmdlet by adding the –Full
 parameter. The detailed and the full documentation are both useful when you
want to dig deeper, and usually either one will give you the information you are
looking for.

Using Cmdlet Parameters

 All cmdlet parameters are designated with an initial dash (–), as with –Detailed
and –Full in the previous section. To reduce the amount of typing required, some
parameters are position sensitive, so that you can sometimes pass parameters in a
specifi c order without having to specify the parameter name. For example, in the
syntax for the Get-Service cmdlet, you know the –Name parameter can be omitted
because it is enclosed in brackets as shown here:

Get-Service [-ComputerName <string[]>] [-DependentServices]
[-Exclude <string[]>] [-Include <string[]>] [-ServicesDependedOn]
[[-Name] <string[]>] [<CommonParameters>]

 Therefore, with Get-Service, you don’t have to specify the –Name parameter; you
can simply type the following:

get-service ServiceName

get-help new-variable

Get-Service [-ComputerName <string[]>] [-DependentServices]
[-Exclude <string[]>] [-Include <string[]>] [-ServicesDependedOn]
[[-Name] <string[]>] [<CommonParameters>]

get-service ServiceName

 Introducing Windows PowerShell CHAPTER 1 15

 where ServiceName is the name of the service you want to examine, such as:

get-service winrm

 This command line returns the status of the Windows Remote Management ser-
vice. Because you can use wildcards, such as *, with name values, you can also type
get-service win* to return the status of all services whose names begin with win.
Typically, these will include the Windows Defender, Windows Management Instru-
mentation, and Windows Remote Management services, as shown in this example:

Status Name DisplayName

------ ---- -----------

Running WinDefend Windows Defender

Stopped WinHttpAutoProx... WinHTTP Web Proxy Auto-Discovery

Running Winmgmt Windows Management Instrumentation

Stopped WinRM Windows Remote Management

 All cmdlets support a common set of parameters. Most cmdlets that make
changes support the risk mitigation parameters: –Confi rm and –WhatIf. Table 1-3 lists
the common and risk mitigation parameters. Although you can use the common
parameters with any cmdlet, they don’t necessarily have an effect with all cmdlets.
For example, if a cmdlet doesn’t generate verbose output, using the –Verbose
parameter has no effect.

 TABLE 1-3 Common and Risk Mitigation Parameters

 PARAMETER NAME DESCRIPTION

 –Confi rm Pauses execution and requires the user to acknowledge
the action before continuing.

 –Debug Provides programming-level debugging information
about the operation.

 –ErrorAction Controls the command behavior when an error occurs.
Valid values are SilentlyContinue (suppress the error
and continue), Continue (display the error and continue),
Inquire (display the error and prompt to confi rm
 before continuing), and Stop (display the error and
halt execution). The default value is Continue.

 –ErrorVariable Sets the name of the variable (in addition to the stan-
dard error) in which to store errors that have occurred.

 –OutBuffer Sets the output buffer for the cmdlet.

 –OutVariable Sets the name of the variable in which to place output
objects.

 –Verbose Provides detailed information about the operation.

get-service winrm

Status Name DisplayName

------ ---- -----------

Running WinDefend Windows Defender

Stopped WinHttpAutoProx... WinHTTP Web Proxy Auto-Discovery

Running Winmgmt Windows Management Instrumentation

Stopped WinRM Windows Remote Management

CHAPTER 1 Introducing Windows PowerShell 16

 TABLE 1-3 Common and Risk Mitigation Parameters

PARAMETER NAME DESCRIPTION

 –WarningAction Determines how a cmdlet responds to a warning mes-
sage. Valid values are SilentlyContinue (suppress the
warning and continue), Continue (display the warning
and continue), Inquire (display the warning and prompt
to confi rm before continuing), and Stop (display the
warning and halt execution). The default value is
Continue.

 –WarningVariable Sets the name of the variable (in addition to the
standard error) in which to store warnings that have
occurred.

 –WhatIf Allows the user to view what would happen if a cmdlet
were run with a specifi c set of parameters.

Using External Commands

Because Windows PowerShell runs within the context of the Windows command
prompt, you can run all Windows command-line commands, utilities, and graphi-
cal applications from within the Windows PowerShell, either at the PowerShell
prompt or in your scripts. However, it is important to remember that the Windows
PowerShell interpreter parses all commands before passing off the command to
the command-prompt environment. If the Windows PowerShell has a like-named
command, keyword, alias, or function for a command, this command, and not the
expected Windows command, is executed. (See the “Initializing the Environment”
and “Understanding Command Input, Parsing, and Output” sections in Chapter 2,
“Getting the Most from Windows PowerShell” for more information on aliases and
functions.)

Non–Windows PowerShell commands and programs must reside in a directory
that is part of the PATH environment variable. If the item is found in the path, it is
run. The PATH variable also controls where the Windows PowerShell looks for
applications, utilities, and scripts. In Windows PowerShell, you can work with Windows
environment variables by using $env. If you want to view the current settings for the
PATH environment variable, you type $env:path. If you want to add a directory to
this variable, you can use the following syntax:

$env:path += ";DirectoryPathToAdd"

Here, DirectoryPathToAdd is the directory path you want to add to the path, such
as:

$env:path += ";C:\Scripts"

$env:path += ";DirectoryPathToAdd"

$env:path += ";C:\Scripts"

 Introducing Windows PowerShell CHAPTER 1 17

 To have this directory added to the path every time you start Windows Power-
Shell, you can add the command line as an entry in a PowerShell profi le. A profi le
is a type of script used to set the working environment for PowerShell. Keep in
mind that cmdlets are like built-in commands rather than stand-alone executables.
Because of this, they are not affected by the PATH environment variable.

 REAL WORLD Computers running Windows Vista and later versions of Windows

have the SETX utility. With the SETX utility, you can write environment variable

changes directly to the Windows registry, which makes the changes permanent rather

than temporary, as the $env:path command does. You can also use SETX to obtain

current registry key values and write them to a text fi le.

Using Scripts

 Windows PowerShell scripts are text fi les with the .ps1 extension. You can enter
any command or cmdlet that you can run at the PowerShell prompt into a script by
copying the related command text to a fi le and saving the fi le with the .ps1 exten-
sion. You can then run the script in the same way you would any other command or
cmdlet. However, when you are working with PowerShell scripts, the current direc-
tory might not be part of the environment path. For this reason, you might need
to use “./” when you run a script in the current directory. For example, if you create
a PowerShell script called run_all.ps1, and the script is in the current directory, you
could run the script by entering the following command:

./run_all

 NOTE PowerShell is designed to accommodate users with backgrounds in UNIX

or Windows operating systems. You can use a forward slash or backward slash as a

 directory separator. Following this, you can enter ./run_all or .\run_all to reference

a script in the current working directory.

 Whenever you work with scripts, you need to keep in mind the current execution
policy and whether signed scripts are required.

Understanding Execution Policy

 The current execution policy for Windows PowerShell controls whether and how
you can run confi guration fi les and scripts. Execution policy is a built-in security
feature of Windows PowerShell that is set on a per-user basis in the Windows
registry. Although the default confi guration depends on which operating system
and edition is installed, you can quickly determine the execution policy by entering
get-executionpolicy at the PowerShell prompt.

./run_all

CHAPTER 1 Introducing Windows PowerShell 18

The available execution policies, from most secure to least secure, are:

 Restricted Does not load confi guration fi les or scripts. This means all
confi guration fi les and scripts, regardless of whether they are signed or un-
signed. Because a profi le is a type of script, profi les are not loaded either.

 AllSigned Requires all confi guration fi les and scripts from all sources—
whether local or remote—to be signed by a trusted publisher. Because of
this requirement, confi guration fi les and scripts on the local computer must
be signed as confi guration fi les, and scripts from remote computers must
be signed. PowerShell prompts you before running scripts from trusted
publishers.

 RemoteSigned Requires all confi guration fi les and scripts from remote
sources to be signed by a trusted publisher. Confi guration fi les and scripts on
the local computer do not need to be signed. PowerShell does not prompt
you before running scripts from trusted publishers.

 Unrestricted Allows all confi guration fi les and scripts to run whether they
are from local or remote sources and regardless of whether they are signed
or unsigned. However, if you run a confi guration fi le or script from a remote
resource, you are prompted with a warning that the fi le comes from a remote
resource before the confi guration fi le is loaded or the script runs.

 As you can see, execution policy determines whether you can load confi gura-
tion fi les and run scripts as well as whether scripts must be digitally signed before
they will run. When an execution policy prevents loading a fi le or running a script, a
warning is displayed explaining applicable restrictions.

 You can use Set-ExecutionPolicy to change the preference for the execution
policy. Changes to the policy are written to the registry. However, if the Turn On
Script Execution setting in Group Policy is enabled for the computer or user, the user
preference is written to the registry, but it is not effective, and Windows PowerShell
displays a message explaining the confl ict. You cannot use Set-ExecutionPolicy to
override a group policy, even if the user preference is more restrictive than the
policy setting.

 To set the execution policy to require that all scripts have a trusted signature to
execute, enter the following command:

set-executionpolicy allsigned

 To set the execution policy so that scripts downloaded from the Web execute
only if they are signed by a trusted source, enter:

set-executionpolicy remotesigned

set-executionpolicy allsigned

set-executionpolicy remotesigned

 Introducing Windows PowerShell CHAPTER 1 19

 To set the execution policy to run scripts regardless of whether they have a digital
signature and work in an unrestricted environment, you can enter the following
command:

set-executionpolicy unrestricted

 The change occurs immediately and is applied to the local console or application
session. Because the change is written to the registry, the new execution policy will
be used whenever you work with PowerShell.

 NOTE Because only administrators are allowed to change the execution policy

on Windows Vista or later, you must run Windows PowerShell with the Run As

Administrator option.

Understanding Script Signing

 Signing scripts is much easier than you might think. To sign scripts, you can use
the Set-AuthenticodeSignature cmdlet. This cmdlet creates digital signatures using
a digital certifi cate. Digital certifi cates can be created by a certifi cate authority
(CA), or you can create your own self-signed certifi cates. When you use certifi cates
 created by a CA, you can use the certifi cate on any computer that trusts the CA.
When you use self-signed certifi cates, you can use the certifi cate on your local
computer.

 In Windows domains, you can use Active Directory Certifi cate Services to
 establish a certifi cate authority (CA) and create digital certifi cates. As most
 enterprises have CAs and use digital certifi cates to enhance security, you may
already have been issued a digital certifi cate that you can use for code signing.
To fi nd out, enter the following command:

get-childitem cert:\CurrentUser\My -codesigningcert

 Or you can examine the certifi cates store. The certifi cates store on a Windows
computer stores trust information. In the certifi cates store, you can view information
about the following:

 Personal Certifi cates stored on the local computer that are assigned to
you for various uses.

 Other People Certifi cates stored on the local computer that are assigned
to other people for various uses.

 Trusted Root Certifi cation Authorities Root CAs your computer trusts.
Your computer will trust any certifi cates from these root CAs.

 Trusted Publishers Publishers whose digitally signed scripts are trusted.

 Untrusted Publisher Publishers whose digitally signed scripts are not
trusted.

set-executionpolicy unrestricted

get-childitem cert:\CurrentUser\My -codesigningcert

CHAPTER 1 Introducing Windows PowerShell 20

You can access the certifi cates store through the Internet Properties dialog box.
In Control Panel, select Network And Internet and then click Internet Options. In the
Internet Properties dialog box, on the Content tab, click Certifi cates to display the
Certifi cates dialog box. Use the Certifi cates store to examine the various types of
trust information and related details.

PowerShell makes certifi cates available through the Cert provider. As you’ll learn
more about in the “Using Providers” section in Chapter 5, “Navigating Core Power-
Shell Structures,” the data that a provider exposes appears as a drive that you can
browse much like you browse a hard drive. If you enter cd cert: at the PowerShell
prompt, you will access the certifi cates store on your computer. If you then enter
dir (which is an alias for Get-ChildItem), you’ll see a list of locations you can browse.
Typically, this will include CurrentUser and LocalMachine, which are the certifi cate
stores for the currently logged-on user and the local computer, respectively, as
shown in the following example and sample output:

cd cert:
dir

Location : CurrentUser

StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}

Location : LocalMachine

StoreNames : {SmartCardRoot, AuthRoot, CA, Trust...}

 While you are working with the Cert provider, if you enter cd currentuser and
then type dir again, you’ll see all the substores for the current user. One of these
stores is the My store, where personal certifi cates are stored, as shown in the follow-
ing example and sample output:

cd currentuser
dir

Name : SmartCardRoot

Name : UserDS

Name : AuthRoot

Name : CA

Name : ADDRESSBOOK

Name : Trust

Name : Disallowed

Name : My

Name : Root

Name : TrustedPeople

Name : TrustedPublisher

cd cert:
dir

Location : CurrentUser

StoreNames : {SmartCardRoot, UserDS, AuthRoot, CA...}

Location : LocalMachine

StoreNames : {SmartCardRoot, AuthRoot, CA, Trust...}

cd currentuser
dir

Name : SmartCardRoot

Name : UserDS

Name : AuthRoot

Name : CA

Name : ADDRESSBOOK

Name : Trust

Name : Disallowed

Name : My

Name : Root

Name : TrustedPeople

Name : TrustedPublisher

 Introducing Windows PowerShell CHAPTER 1 21

 You can see the personal certifi cates for code signing in the My store by entering
cd my and then entering dir –codesigningcert, as shown in the following example
and sample output:

cd my
dir -codesigningcert

Directory: Microsoft.PowerShell.Security\Certificate::currentuser\my

Thumbprint Subject

---------- -------

D382828348348388243348238423BE2828282833 CN=WRSTANEK

AED38282838383848483483848348348BAC39839 CN=WRSTANEK

 Whether you enter Get-ChildItem –Codesigningcert or Dir –Codesigningcert, the
results are the same. The command returns an array of certifi cates. In PowerShell,
you can reference individual elements in an array by their index position. The fi rst
element in an array has the index position 0, the second 1, and so on.

 If you have a personal certifi cate for code signing issued by a CA, you can sign
unsigned scripts using the following command:

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]
Set-AuthenticodeSignature ScriptName.ps1 $cert

 Note that these are two separate commands and that ScriptName sets the name
of the script to sign, such as:

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]
Set-AuthenticodeSignature run_all.ps1 $cert

 Here, you use Get-ChildItem to access the My certifi cates store and get the fi rst
personal certifi cate for code signing and then use the certifi cate to sign the run_all.
ps1 script. As long as the certifi cate is signed by an enterprise CA, you can run the
signed script on any computer in the enterprise that trusts the CA.

Creating and Using Self-Signed Certifi cates

 You can create a self-signed certifi cate using makecert.exe. This utility is included
in the Microsoft .NET Framework Software Development Kit (SDK) Versions 1.1 and
later, and in the platform-specifi c Windows SDK. After you download and install the
appropriate SDK, you must:

 1. Open an elevated, administrator command prompt (cmd.exe).

 2. Use the command prompt to create a local certifi cate authority for your
computer.

 3. Use the command prompt to generate a personal certifi cate via this certifi -
cate authority.

cd my
dir -codesigningcert

Directory: Microsoft.PowerShell.Security\Certificate::currentuser\my

Thumbprint Subject

---------- -------

D382828348348388243348238423BE2828282833 CN=WRSTANEK

AED38282838383848483483848348348BAC39839 CN=WRSTANEK

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]
Set-AuthenticodeSignature ScriptName.ps1 $cert

$cert = @(Get-ChildItem cert:\CurrentUser\My -codesigningcert)[0]
Set-AuthenticodeSignature run_all.ps1 $cert

CHAPTER 1 Introducing Windows PowerShell 22

You create the local certifi cate authority by entering the following command:

makecert -n "CN=PowerShell Local Certificate Root" -a sha1
-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer
-ss Root -sr localMachine

Here, you’re running this from a command prompt with Administrator privileges
in the directory where makecert is located. Note that this is a single command, and
the parameters are used as follows:

 The –n parameter sets the certifi cate name. The name value is preceded by
CN=.

 The –a parameter sets the signature algorithm as SHA1 as opposed to MD5
(the default value).

 The –eku parameter inserts the enhanced key usage object identifi er:
1.3.6.1.5.5.7.3.3.

 The –r parameter specifi es that you want to create a self-signed certifi cate.

 The –sv parameter sets the fi le names for the private key fi le and the certifi -
cate fi le that makecert will create.

 The –ss parameter sets the name of the store that stores the output certifi -
cate as Root for the Trusted Root Certifi cate Authorities store.

 The –sr parameter sets the certifi cate store location as the local machine, as
opposed to the current user (the default value).

 You generate a personal certifi cate via this certifi cate authority by entering the
following command:

makecert -pe -n "CN=PowerShell User" -ss MY -a sha1
-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

Note that this is a single command, and the parameters are used as follows:

 The –pe parameter marks the certifi cate’s private key as exportable.

 The –n parameter sets the certifi cate name. Again, the name value is
 preceded by CN=.

 The –ss parameter sets the name of the store that stores the output certifi -
cate as MY, for the Personal store.

 The –a parameter sets the signature algorithm as SHA1.

 The –eku parameter inserts the enhanced key usage object identifi er:
1.3.6.1.5.5.7.3.3.

 The –iv parameter specifi es the name of the CA’s private key fi le.

 The –ic parameter specifi es the name of the CA’s certifi cate fi le.

The fi rst command generates two temporary fi les: root.pvk and root.cer. The
second command uses these fi les to create a certifi cate that is stored in the Personal
certifi cate store on the local computer.

makecert -n "CN=PowerShell Local Certificate Root" -a sha1
-eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer
-ss Root -sr localMachine

makecert -pe -n "CN=PowerShell User" -ss MY -a sha1
-eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

 Introducing Windows PowerShell CHAPTER 1 23

 MakeCert will prompt you for a private key password. The password ensures that
no one can use or access the certifi cate without your consent. Create and enter a
password that you can remember. You will use this password later to retrieve the
certifi cate.

 To verify that the certifi cate was generated correctly, use the following command
to search for the certifi cate in the Personal certifi cate store on the computer:

get-childitem cert:\CurrentUser\My -codesigningcert

 This command uses the Windows PowerShell Certifi cate provider to view infor-
mation about certifi cates in the My personal certifi cate store. If the certifi cate was
created, the output lists the certifi cate by its encrypted thumbprint and subject.

 After you have a self-signed certifi cate, you can sign scripts as discussed previously.
The signed script will run on the local computer. However, the signed script will not
run on computers on which the execution policy requires a digital signature from a
trusted authority. On these computers, Windows PowerShell reports that the script
cannot be loaded and that the signature of the certifi cate cannot be verifi ed.

get-childitem cert:\CurrentUser\My -codesigningcert

25

CHAP TER 2

Getting the Most from
 Windows PowerShell

Initializing the Environment 26

Understanding Command Input, Parsing, and Output 31

Writing and Formatting Output 37

Windows PowerShell provides an effective environment for working with
commands and scripts. As discussed in Chapter 1, “Introducing Windows

PowerShell,” you can run many types of commands at the command line, including
built-in cmdlets, Windows utilities, and applications with command-line extensions.
Regardless of its source, every command you’ll use follows the same syntax rules.
These rules state that a command consists of a command name followed by any
required or optional arguments. Arguments, which include parameters, parameter
values, and other command text, can also use piping to combine commands and
redirection to specify the sources for inputs, outputs, and errors.

When you execute commands in PowerShell, you start a series of events that
are similar to the following:

 1. Multiple commands that are chained or grouped and passed on a single
line are broken into individual units of execution. Values within a unit of
execution are broken into a series of segments called tokens.

 2. Each token is parsed, commands are separated from values, and values are
evaluated as some kind of object type, such as String or Boolean. Variables
in the command text are replaced with their actual values as appropriate
during parsing.

 3. The individual commands are then processed. If a command’s name has a
file path, PowerShell uses this path to find the command. If the command
cannot be found in the specified location, PowerShell returns an error.

 4. If a command’s name doesn’t specify a file path, PowerShell tries to resolve
the command name internally. A match means that you’ve referenced a
built-in command (including an alias to a command or a function) that can

 CHAPTER 2 Getting the Most from Windows PowerShell26

be executed immediately. If no match is found, PowerShell searches the
command path for a matching command executable. If the command cannot
be found in any of those locations, PowerShell returns an error. Because
PowerShell does not look in the current directory by default, you must
explicitly specify the current directory.

 5. If the command is located, the command is executed using any specified
arguments, including those that specify the inputs to use. Command output
and any errors are written to the PowerShell window or to the specified des-
tinations for output and errors.

As you can see, many factors can affect command execution, including com-
mand path settings, redirection techniques, and whether commands are chained
or grouped. In this chapter, I’ll describe and show examples of this breakdown of
command execution to help you get the most out of PowerShell. Before diving into
those discussions, however, let’s look at special considerations for starting Power-
Shell and examine the concepts of profiles and console files.

Initializing the Environment

Windows PowerShell provides a dynamic, extensible execution environment. You
can initialize the environment for PowerShell in several ways, including passing
startup parameters to Powershell.exe, using a customized profile, using a console
file, or any combination of the three. You can extend the environment for PowerShell
in several ways as well, including by installing providers and registering snap-ins as
discussed in Chapter 3, “Managing Your PowerShell Environment.”

Passing Startup Parameters

If you worked with PowerShell previously, you probably opened a console window
by clicking Start, pointing to All Programs, pointing to Accessories, pointing to
Windows PowerShell, and then choosing Windows PowerShell. This technique
starts PowerShell with standard user privileges rather than administrator privileges,
however, so you would not be able to perform many administrative tasks. To
start PowerShell with administrator privileges, you need to click Start, point to All
Programs, point to Accessories, point to Windows PowerShell, right-click Windows
PowerShell, and then select Run As Administrator.

Other ways to start a PowerShell console are to use the Search box on the Start
menu, use the Run dialog box, or type powershell in an open command-shell
window. These techniques enable you to pass arguments to PowerShell, including
switches that control how PowerShell works and parameters that execute additional
commands. For example, you can start PowerShell in no-logo mode (meaning the
logo banner is turned off) by using the startup command powershell -nologo.
By default, when you start PowerShell via the command shell, PowerShell runs and
then exits. If you want PowerShell to execute a command and not terminate, type
powershell /noexit followed by the command text.

 Getting the Most from Windows PowerShell CHAPTER 2 27

 Listing 2-1 shows the basic syntax for invoking the PowerShell console. Table 2-1
lists the available startup parameters. By default, startup profi les are loaded when
the PowerShell console starts. You can exit the console at any time by typing exit.

LISTING 2-1 PowerShell Syntax

powershell[.exe] [-PSConsoleFile FileName | -Version VersionNumber]
 [-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive] [-Sta]
 [-InputFormat {Text | XML}] [-OutputFormat {Text | XML}]
 [-WindowsStyle Style] [-EncodedCommand Base64EncodedCommand]
 [-File ScriptFilePath] [-ExecutionPolicy PolicySetting]
 [-Command CommandText]

 TABLE 2-1 PowerShell Startup Parameters

 PARAMETER DESCRIPTION

 –Command Specifi es the command text to execute as though it were
typed at the PowerShell command prompt.

 –EncodedCommand Specifi es the base64-encoded command text to execute.

 –ExecutionPolicy Sets the default execution policy for the console session.

 –File Sets the name of a script fi le to execute.

 –InputFormat Sets the format for data sent to PowerShell as either text
string or serialized XML. The default format is XML. Valid
values are text and XML.

 –NoExit Does not exit after running startup commands. This
parameter is useful when you run PowerShell commands
or scripts via the command prompt (cmd.exe).

 –NoLogo Starts the PowerShell console without displaying the
copyright banner.

 –Noninteractive Starts the PowerShell console in noninteractive mode.
In this mode, PowerShell does not present an interactive
prompt to the user.

 –NoProfi le Tells the PowerShell console not to load the current
user’s profi le.

 –OutputFormat Sets the format for output as either text string or serialized
XML. The default format is text. Valid values are text and
XML.

powershell[.exe] [-PSConsoleFile FileName | -Version VersionNumber]
 [-NoLogo] [-NoExit] [-NoProfile] [-NonInteractive] [-Sta]
 [-InputFormat {Text | XML}] [-OutputFormat {Text | XML}]
 [-WindowsStyle Style] [-EncodedCommand Base64EncodedCommand]
 [-File ScriptFilePath] [-ExecutionPolicy PolicySetting]
 [-Command CommandText]

 CHAPTER 2 Getting the Most from Windows PowerShell28

TABLE 2-1 PowerShell Startup Parameters

PARAMETER DESCRIPTION

–PSConsoleFile Loads the specified Windows PowerShell console file.
Console files end with the .psc1 extension and can be
used to ensure that specific snap-in extensions are
loaded and available. You can create a console file using
Export-Console in Windows PowerShell.

–Sta Starts PowerShell in single-threaded mode.

–Version Sets the version of Windows PowerShell to use for
 compatibility, such as 1.0.

–WindowStyle Sets the window style as Normal, Minimized, Maximized,
or Hidden. The default is Normal.

Invoking Windows PowerShell

Although you’ll most often work with the PowerShell console or the PowerShell
application, at times you might want to invoke PowerShell to run a cmdlet from the
Windows command shell (cmd.exe) environment or a batch script. To do so, you use
the –Command parameter. Generally, you will also want to suppress the Windows
PowerShell logo with the –NoLogo parameter and stop execution of profiles
with the –NoProfile parameter. For example, at a command prompt or in a batch
script, you could get a list of running processes via PowerShell with the following
 command:

powershell –nologo –noprofile –command get-process

When you enter this command, the Windows command shell runs PowerShell
as it would any other external program, passing in the parameters and parameter
values you use and then exiting PowerShell when execution completes. If you want
the command shell to run a PowerShell command and remain in PowerShell after
execution, you can add the –NoExit parameter as shown in the following example:

powershell –noexit –command get-process

Using –Command to Run Commands

Because –Command is the most common parameter you’ll use when invoking
PowerShell from a command prompt or batch script, let’s take a closer look at all the
ways it can be used. If you enter – as the command, the command text is read from
standard input. You also can use piping and redirection techniques to manipulate
the output of a command. However, keep in mind that any characters typed after
the command are interpreted as command arguments. Because of this, to write a
command that includes piping or redirection, you must enclose the command text

 Getting the Most from Windows PowerShell CHAPTER 2 29

in double quotation marks. The following example gets information about currently
running processes and sorts it by process identifier:

powershell –nologo –noprofile –command "get-process | sort-object Id"

REAL WORLD Most commands generate output that can be redirected to another

command as input. To do this, you use a technique called piping, whereby the output

of a command is sent as the input of the next command. Following this, you can see

the general syntax for piping is

Command1 | Command2

where the pipe redirects the output of Command1 to the input of Command2. But you

can also redirect output more than once by using this syntax:

Command1 | Command2 | Command3

Generally, if a cmdlet accepts input from another cmdlet, the cmdlet will have an

–InputObject parameter and you can pipe output to the cmdlet.

Windows PowerShell also supports script blocks. A script block is a series of
commands executed in sequence. Script blocks are enclosed in braces ({}), and
each command within a script block is separated by a semicolon. Although you can
enter script blocks enclosed in braces, you can do so directly only when running
 Powershell.exe in Windows PowerShell. The results are then returned as deserialized
XML objects rather than standard objects. For example, if you are already working
at the PowerShell prompt and want to run a series of commands through a separate
Power Shell instance, you can do so by enclosing the commands in braces and
 separating commands with semicolons, as shown in this example:

powershell –command {get-service; get-process}

Although this technique works if you are already working with the PowerShell
prompt, it doesn’t work when you want to run PowerShell from a command prompt.
The workaround is to use the following format:

"& {CommandText}"

Here, the quotation marks indicate a string, and the ampersand (&) is an invoke
operator that causes the command to be executed. After you write a string that runs
a command, you will generally be able to run the command at either the command
prompt or the PowerShell prompt. For example, even though you cannot enter
power shell -command {get-service; get-process} at the command prompt, you
can enter the following at a command prompt:

powershell –command "& {get-service; get-process}"

Here, you pass a code block to PowerShell as a string to parse and execute.
PowerShell executes Get-Service and displays the results and then executes
Get-Process and displays the results. If you want one syntax that will generally

 CHAPTER 2 Getting the Most from Windows PowerShell30

succeed whether you are working with strings, multiple commands, the command
prompt, or the PowerShell prompt, this syntax is the one you should use.

Using –File to Run Scripts

When you are working with the Windows command shell and want to run a
 PowerShell script, you also can use piping and redirection techniques to manipulate
the output of a command. However, instead of using the –Command parameter,
you use the –File parameter to specify the script to run. As shown in the following
example, you follow the –File parameter with the path to the script to run:

powershell –nologo –noprofile –file c:\scripts\run_all.ps1

If the script is in the current directory, simply enter the script name:

powershell –nologo –noprofile –file run_all.ps1

If the path name includes blank spaces, you must enclose the path in double
quotation marks, as shown in this example:

powershell –nologo –noprofile –file "c:\data\current scripts\run_all.ps1"

REAL WORLD You can specify parameters whether you start PowerShell from the

menu or a command prompt. When starting PowerShell from the menu, edit the menu

shortcut that starts the PowerShell console or the PowerShell application to specify

parameters you want to use whenever you work with PowerShell. To do so, follow

these steps:

 1. On the menu, right-click the shortcut and then select Properties.

In the Properties dialog box, the Target entry on the Shortcut tab is selected

by default.

 2. Without pressing any other key, press the Right arrow key. This places the

insertion cursor at the end of the full path to PowerShell. Insert a space, and

then type your parameters and parameter values.

 3. Click OK to save the settings. If you make a mistake or no longer want to use

parameters, repeat this procedure and remove any parameters and values

you’ve added.

Using Nested Consoles

Sometimes you might want to use different environment settings or parameters for
a PowerShell console and then go back to your original settings without exiting the
console window. To do this, you can use a technique called nesting. With nesting,
you start a PowerShell console within another PowerShell console.

Unlike the command shell, the nested console opens with a new working envi-
ronment and does not inherit its environment settings from the current console. You
can work in this separate console environment and execute commands and scripts.

 Getting the Most from Windows PowerShell CHAPTER 2 31

When you type exit to close the instance of the nested console, you return to the
previous console, and the previous environment settings are restored.

Understanding Command Input, Parsing, and Output

As you’ve seen from examples in this chapter and in Chapter 1, typing commands at
the PowerShell prompt is a fairly straightforward process. The most basic approach
is simply to type your command text and then press Enter. When you press Enter,
PowerShell processes and parses the command text.

Basic Line Editing

The PowerShell console includes some basic editing capabilities for the current
line. Table 2-2 lists the editing keys. Alternatively, enter get-history to list all the
commands in the command history, or enter clear-history to clear the command
history. Get-History lists commands by command number, and you can pass this to
Invoke-History to run a specific numbered command from your command history.
In this example, you run command 35:

invoke-history 35

TABLE 2-2 Basic Editing Keys

KEY USAGE

` Press the backward apostrophe key to insert a line break
or as an escape character to make a literal character. You
can also break a line at the pipe (|) character.

Alt+Space+E Displays an editing shortcut menu with Mark, Copy,
Paste, Select All, Scroll, and Find options. You can then
press K for Mark, Y for Copy, P for Paste, S for Select
All, L to scroll through the screen buffer, or F to search
for text in the screen buffer. To copy the screen buffer
to the Clipboard, press Alt+Space+E+S and then press
Alt+Space+E+Y.

Alt+F7 Clears the command history.

Ctrl+C Press Ctrl+C to break out of the subprompt or terminate
execution.

Ctrl+End Press Ctrl+End to delete all the characters in the line
after the cursor.

Ctrl+Left arrow /
Ctrl+Right arrow

Press Ctrl+Left arrow or Ctrl+Right arrow to move left or
right one word at a time.

Ctrl+S Press Ctrl+S to pause or resume the display of output.

 CHAPTER 2 Getting the Most from Windows PowerShell32

TABLE 2-2 Basic Editing Keys

KEY USAGE

Delete / Backspace Press Delete to delete the character under the cursor, or
press the Backspace key to delete the character to the
left of the cursor.

Esc Press the Esc key to clear the current line.

F1 Moves the cursor one character to the right on the com-
mand line. At the end of the line, inserts one character
from the text of your last command.

F2 Creates a new command line by copying your last com-
mand line up to the character you type.

F3 Completes the command line with the content from
your last command line, starting from the current cursor
position to the end of the line.

F4 Deletes characters from your current command line,
starting from the current cursor position up to the char-
acter you type.

F5 Scans backward through your command history.

F7 Displays a pop-up window with your command history
and allows you to select a command. Use the arrow keys
to scroll through the list. Press Enter to select a com-
mand to run, or press the Right arrow key to place the
text on the command line.

F8 Uses text you’ve entered to scan backward through your
command history for commands that match the text
you’ve typed so far on the command line.

F9 Runs a specific numbered command from your com-
mand history. Command numbers are listed when you
press F7.

Home / End Press Home or End to move to the beginning or end of
the line.

Insert Press Insert to switch between insert mode and over-
write mode.

Left / Right arrow keys Press the Left or Right arrow key to move the cursor left
or right on the current line.

Page Up / Page Down Press the Page Up or Page Down key to access the first
or last command in the command history.

 Getting the Most from Windows PowerShell CHAPTER 2 33

TABLE 2-2 Basic Editing Keys

KEY USAGE

Right-click If QuickEdit is disabled, displays an editing shortcut
menu with Mark, Copy, Paste, Select All, Scroll, and Find
options. To copy the screen buffer to the Clipboard,
right-click, choose Select, and then press Enter.

Tab / Shift+Tab Press the Tab key or press Shift+Tab to access the tab
expansion function as discussed in “Creating and Using
Functions” in Chapter 6, “Mastering Aliases, Functions,
and Objects.”

Up / Down arrow keys Press the Up or Down arrow key to scan forward or
backward through your command history, as discussed
in “Working with the Command History” in Chapter 1.

Windows key+R and
then type powershell

Runs Windows PowerShell. However, if you’ve installed
multiple versions of PowerShell or are using a 64-bit
computer, the first version encountered runs (and this is
not necessarily the one you want to use).

REAL WORLD The way copying and pasting text works in the PowerShell console

depends on whether QuickEdit mode is enabled or disabled. With QuickEdit enabled,

you copy text by dragging the mouse and pressing Enter, and then paste text by clicking

the mouse. When you drag the mouse to select text to copy, be careful not to pause

momentarily when you start; otherwise, PowerShell will paste from the Clipboard. With

QuickEdit disabled, you copy by right-clicking, selecting Mark, dragging the mouse to

select the text, and then pressing Enter. You paste by right-clicking and selecting Paste.

You can enable or disable QuickEdit using the Properties dialog box, as described in the

“Configuring Windows PowerShell Console Properties” section of Chapter 1.

How Parsing Works

In addition to the processing modes discussed previously in “Passing Startup Param-
eters,” PowerShell also has parsing modes. Don’t confuse processing modes with
parsing modes. Processing modes control the way PowerShell processes commands.
Generally speaking, processing occurs either interactively or noninteractively. Pars-
ing modes control the way PowerShell parses each value within a command line.

PowerShell breaks down command lines into units of execution and tokens. A
unit of execution includes everything from the first character on a line to either a
semicolon or the end of a line. A token is a value within a unit of execution. Know-
ing this, you can:

 Enter multiple commands on a single command line by using semicolons to
separate each command.

 Mark the end of a unit of execution by pressing Enter.

 CHAPTER 2 Getting the Most from Windows PowerShell34

The way PowerShell parses values is determined by the first token encountered
when parsing a unit of execution. PowerShell parses using one of these modes:

 Expression mode PowerShell uses expression mode when the first token
encountered in a unit of execution is not the name of a cmdlet, keyword,
alias, function, or external utility. PowerShell evaluates expressions as either
numerical values or strings. Character string values must be contained in
quotation marks, and numbers not in quotation marks are treated as numeri-
cal values (rather than as a series of characters).

 Command mode PowerShell uses command mode when the first token
encountered in a unit of execution is the name of a cmdlet, keyword, alias,
function, or external utility. PowerShell invokes command tokens. Values
after the command token are handled as expandable strings except when
they start with a special character that denotes the start of a variable, array,
string, or subexpression. These special characters include $, @, ‘, “ and (, and
when these characters are encountered, the value is handled using expres-
sion mode.

With these rules in mind, you can see that the following are true:

 If you enter 5+5 at the PowerShell prompt, PowerShell interprets 5+5 as an
expression to evaluate and displays the result as 10.

 If you enter Write-Host 5+5 at the PowerShell prompt, PowerShell interprets
5+5 as an argument to Write-Host and displays 5+5.

 If you enter Write-Host (5+5) at the PowerShell prompt, PowerShell inter-
prets (5+5) as an expression to evaluate and then pass to Write-Host. As a
result, PowerShell displays 10.

Parsing Assigned Values

In PowerShell, variable definitions begin with the dollar sign ($) and are followed by
the name of the variable you are defining. To assign a value to a variable, you use
the equals sign (=) and then specify the value you want. After you create a variable,
you can reference or display the value of the variable by using the variable name.

Following this, if you enter $a = 5+5 at the PowerShell prompt, PowerShell inter-
prets 5+5 as an expression to evaluate and assigns the result to the variable a. As a
result, when you write the value of $a to the PowerShell prompt by entering

$a

or by entering

Write-Host $a

the output is

10

 Getting the Most from Windows PowerShell CHAPTER 2 35

On the other hand, let’s say you define a variable named $a and assign it a string
value, such as:

$a = "This is a string."

Here, the value assigned to $a is handled as a literal string, and the string is
processed in expression mode. You know this because when you write the value of
$a to the PowerShell prompt by entering

$a

or by entering

Write-Host $a

the output is

This is a string.

Sometimes, however, you’ll want to force PowerShell to interpret a string literal
expression using command mode. To see why, consider the following example:

$a = "Get-Process"

If you write the value of $a to the PowerShell prompt by entering

$a

the output is

Get-Process

This occurs because the value assigned to $a is handled as a literal string, and
the string is processed in expression mode. However, you might have wanted
Power Shell to actually run the Get-Process cmdlet. To do this, you need PowerShell
to parse the string and determine that it contains a token that should be processed
in command mode. You can accomplish this by using the & operator when you
reference the $a variable, as shown in this example:

&$a

Because PowerShell processes the string in command mode, Get-Process is seen
as a command token, the Get-Process cmdlet is invoked, and the output displays the
currently running processes. This technique can be used with any cmdlet, keyword,
alias, function, or external utility name assigned to a variable in a string. However, if
you want to add values in addition to the command name, for example parameters,
or use multiple commands or piping, you must enclose your command or commands
in curly braces rather than quotation marks. This denotes a script block. Here is an
example:

$a = {get-eventlog -newest 25 -logname application}

CHAPTER 2 Getting the Most from Windows PowerShell36

The value assigned to $a is handled as a special string, and the string is processed
in expression mode. You know this because when you write the value of $a to the
PowerShell prompt, the output is:

get-eventlog -newest 25 -logname system

You can force PowerShell to parse the contents of the script block by using:

&$a

PowerShell will then parse each token in the script block. The result will be the
same as when you enter the command text.

Parsing Exceptions

When you enter part of an expression on the command line but do not complete
the expression, PowerShell displays the >> subprompt, indicating that it is waiting
for you to complete the expression. For example, if you type Write-Host (and press
Enter, PowerShell displays the >> subprompt and waits for you to complete the
expression. You must then complete the command line by entering any additional
required text, such as 5+5), and then press Enter. You must then press Enter again
(without typing any additional text) to exit the subprompt and return. PowerShell
then interprets this input as a completed unit of execution.

If you want to intentionally split command text across multiple lines of input, you
can use the backward apostrophe character (`). This technique is handy when you
are copying long command lines and pasting them into a PowerShell console so
that you can run them. Here’s how this works:

 1. Enter part of the command text, and then type `. When you press Enter,
PowerShell displays the >> subprompt.

 2. Enter the next part of the command text. Then either enter ` to indicate that
you want to continue the command text on the next line or press Enter to
mark the end of the command text.

 3. When you fi nally mark the end of the line by pressing Enter without using
the backward apostrophe (and you’ve closed all expressions), PowerShell
parses the command text as appropriate.

An example and partial output follows:

get-eventlog -newest 25 `
>> -logname system
>>

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

258248 Feb 28 16:12 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

258247 Feb 28 14:27 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

get-eventlog -newest 25 `
>> -logname system
>>

Index Time EntryType Source InstanceID Message

----- ---- --------- ------ ---------- -------

258248 Feb 28 16:12 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

258247 Feb 28 14:27 Information Service Control M... 1073748860 The

description for Event ID ‘1073748860’ in So...

 Getting the Most from Windows PowerShell CHAPTER 2 37

 If your command text uses the pipe (|) character, you can also break a line and
continue it on the next line at the pipe character, as shown in the following example
and partial output:

get-process |
>> sort-object Id
>>

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 0 0 0 24 0 0 Idle

 710 0 0 12904 20 4 System

 28 1 360 816 4 516 smss

 666 6 1872 5212 94 592 csrss

Output from Parsing

 After parsing commands and values, PowerShell returns output. Unlike with the
command shell (Cmd.exe), built-in commands that you run in PowerShell return
objects in the output. An object is a collection of data points that represent an item.
Objects have a specifi c data type, such as String, Boolean, or Numeric, and have
methods and properties. Object methods allow you to perform actions on the item
the object represents. Object properties store information about the item the object
represents. When you work with PowerShell, you can use an object’s methods and
properties to take specifi c actions and manipulate data.

 When you combine commands in a pipeline, the commands pass information to
each other as objects. When the fi rst command runs, it sends one or more objects
along the pipeline to the second command. The second command receives the
objects from the fi rst command, processes the objects, and then displays output or
passes new or modifi ed objects to the next command in the pipeline. This continues
until all commands in the pipeline run and the fi nal command’s output is displayed.
Because you and I can’t read objects, PowerShell translates the objects for output
on the screen as text. You can manipulate this output in many ways.

Writing and Formatting Output

 Although PowerShell reads and writes objects, the various values associated with
objects are converted to text as a fi nal part of the cmdlet execution process. When
output is written to the console, this output is said to be written to the standard
output stream. PowerShell supports other output streams as well. Before I describe
these output streams, however, I’ll explain how output is formatted by default.

get-process |
>> sort-object Id
>>

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 0 0 0 24 0 0 Idle

 710 0 0 12904 20 4 System

 28 1 360 816 4 516 smss

 666 6 1872 5212 94 592 csrss

CHAPTER 2 Getting the Most from Windows PowerShell38

Using Formatting Cmdlets

When you are working with external utilities and programs, those utilities and pro-
grams determine how the output is formatted. With PowerShell cmdlets, PowerShell
calls designated formatting cmdlets to format the output for you. The formatter
determines which properties of the output are displayed and whether they are dis-
played in a list or table. The formatter makes this determination based on the type
of data being displayed. Strings and objects are handled and processed in different
ways.

NOTE The formatting cmdlets arrange the data to be displayed but do not actually

display it. The output cmdlets, discussed next, are responsible for displaying output.

You can explicitly specify the output format by using one of the following
formatting cmdlets:

 Format-List Formats the output as a list of properties. All properties of the
objects are formatted by default, with each property displayed on a separate
line. Use –Properties to specify which properties to display by name. Enter
property names in a comma-separated list. Use wildcard characters such as
to match any value as necessary.

Format-List [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[[-Property] PropertyName]

 Format-Table Formats the output as a table with selected properties of
the objects in each column. The object type determines the default layout
and the properties that are displayed. Use –AutoSize to automatically adjust
the column size and number of columns based on the width of the data. Use
–HideTableHeaders to omit column headings. Use –Wrap to display text that
exceeds the column width on the next line.

Format-Table [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[-AutoSize] [-HideTableHeaders] [-Wrap] [[-Property] PropertyName]

 Format-Wide Formats the output as a multicolumned table, but only one
property of each object is displayed. Use –AutoSize to automatically adjust
the column size and number of columns based on the width of the data. Use
–Columns to specify the number of columns to display.

Format-Wide [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[-AutoSize] [-Column NumColumns] [[-Property] PropertyName]

Format-List [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[[-Property] PropertyName]

Format-Table [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[-AutoSize] [-HideTableHeaders] [-Wrap] [[-Property] PropertyName]

Format-Wide [-DisplayError] [-ShowError] [-Expand String] [-Force]
[-GroupBy Object] [-InputObject Object] [-View String]
[-AutoSize] [-Column NumColumns] [[-Property] PropertyName]

 Getting the Most from Windows PowerShell CHAPTER 2 39

 Format-Custom Formats the output using a predefi ned alternate view.
You can determine the alternate view by reviewing the *format.PS1XML
fi les in the Windows PowerShell directory. To create your own views in new
.PS1XML fi les, use the Update-FormatData cmdlet to add them to Windows
PowerShell. Use –Depth to specify the number of columns to display.

Format-Custom [-DisplayError] [-ShowError] [-Expand String]
[-Force] [-GroupBy Object] [-InputObject Object] [-View String]
[-Depth Num] [[-Property] PropertyName]

 When working with the previous formatting cmdlets, you might also want to use
these cmdlets:

 Group-Object Groups objects that contain the same value for specifi ed
properties. Objects are grouped in sequence, so if values aren’t sorted you
won’t get the result you want. Use –CaseSensitive to use case-sensitive
grouping rather than the default grouping, which is not case sensitive. Use
–NoElement to omit the names of members of the group, such as fi le names
if you are grouping fi les by extension.

Group-Object [-CaseSensitive] [-Culture String] [-NoElement]
[-InputObject Object] [[-Property] PropertyName]

 Sort-Object Sorts objects in ascending order based on the values of prop-
erties of the object. Use –Descending to reverse sort. Use –CaseSensitive to
use case-sensitive sorting rather than the default sorting, which is not case
sensitive. Use –Unique to eliminate duplicates and return only the unique
members of a specifi ed collection.

Sort-Object [-Culture String] [-CaseSensitive] [-Descending]
[-InputObject Object] [-Unique] [[-Property] PropertyName]

 To change the format of the output from any cmdlet, use the pipeline operator
(|) to send the output of the command to a formatter. For example, the default
format for the Get-Service cmdlet is a table that displays the value of the Status,
Name, and DisplayName properties, as shown in this command and sample output:

get-service

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Running Adobe Version C... Adobe Version Cue CS2

Stopped Adobe Version C... Adobe Version Cue CS3

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Stopped ALG Application Layer Gateway Service

Format-Custom [-DisplayError] [-ShowError] [-Expand String]
[-Force] [-GroupBy Object] [-InputObject Object] [-View String]
[-Depth Num] [[-Property] PropertyName]

Group-Object [-CaseSensitive] [-Culture String] [-NoElement]
[-InputObject Object] [[-Property] PropertyName]

Sort-Object [-Culture String] [-CaseSensitive] [-Descending]
[-InputObject Object] [-Unique] [[-Property] PropertyName]

get-service

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Running Adobe Version C... Adobe Version Cue CS2

Stopped Adobe Version C... Adobe Version Cue CS3

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Stopped ALG Application Layer Gateway Service

CHAPTER 2 Getting the Most from Windows PowerShell40

Format-Wide formats the output as a multicolumned table, but only one property
of each object is displayed. The following command sends the output of a Get-Service
cmdlet to the Format-Wide cmdlet:

get-service | format-wide -column 3

Adobe LM Service Adobe Version Cue CS2 Adobe Version Cue CS3

AeLookupSvc AlertService ALG

AOL ACS Appinfo Apple Mobile Device

AppMgmt AudioEndpointBuilder Audiosrv

BFE BITS Bonjour Service

Browser CertPropSvc clr_optimization_v2.0

COMSysApp CryptSvc CscService

DcomLaunch DFSR Dhcp

As a result, the service data is formatted into multiple columns for each service.
The output provides the name of each confi gured service.

 Knowing the name of a service, you can then examine services by listing the
value of each confi gured property. For example, the following command gets
detailed information on the WinRM service:

get-service winrm | format-list

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanShutdown : False

CanStop : False

ServiceType : Win32ShareProcess

 In this format, the data appears in a list instead of a table, and there is additional
information about the service that the previous output formatting omitted.

With any of the formatting cmdlets, you can use the –Properties parameter to
specify properties to display by name. You can use wildcards such as * to match
any value as necessary. For example, to display all the properties of the winlogon
process, enter:

get-process winlogon | format-list -property *

__NounName : Process

Name : winlogon

Handles : 147

VM : 58609664

get-service | format-wide -column 3

Adobe LM Service Adobe Version Cue CS2 Adobe Version Cue CS3

AeLookupSvc AlertService ALG

AOL ACS Appinfo Apple Mobile Device

AppMgmt AudioEndpointBuilder Audiosrv

BFE BITS Bonjour Service

Browser CertPropSvc clr_optimization_v2.0

COMSysApp CryptSvc CscService

DcomLaunch DFSR Dhcp

get-service winrm | format-list

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanShutdown : False

CanStop : False

ServiceType : Win32ShareProcess

get-process winlogon | format-list -property *

__NounName : Process

Name : winlogon

Handles : 147

VM : 58609664

 Getting the Most from Windows PowerShell CHAPTER 2 41

WS : 6696960

PM : 2437120

NPM : 3832

Id : 808

PriorityClass :

HandleCount : 147

WorkingSet : 6696960

PagedMemorySize : 2437120

PrivateMemorySize : 2437120

VirtualMemorySize : 58609664

 To see all the properties of an object, send the output of a command to the
Get-Member cmdlet. For example, to see all the properties of a service object, type:

get-service | get-member -membertype *property

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

CanPauseAndContinue Property System.Boolean CanPauseAndContinue

{get;}

CanShutdown Property System.Boolean CanShutdown {get;}

CanStop Property System.Boolean CanStop {get;}

Container Property System.ComponentModel.IContainer

DependentServices Property System.ServiceProcess.ServiceController

DisplayName Property System.String DisplayName {get;set;}

MachineName Property System.String MachineName {get;set;}

ServiceHandle Property System.Runtime.InteropServices.SafeHand

ServiceName Property System.String ServiceName {get;set;}

ServicesDependedOn Property System.ServiceProcess.ServiceController

ServiceType Property System.ServiceProcess.ServiceType

Site Property System.ComponentModel.ISite Site

Status Property System.ServiceProcess.ServiceController

 Because all these properties are in the object that Get-Service retrieves for each
service, you can display any or all of them by using the –Property parameter. For
example, the following command uses the Format-Table command to display only
the Name, Status, ServiceType, and ServicesDependedOn properties of each service:

get-service | format-table Name, Status, ServiceType, ServicesDependedOn

Name Status ServiceType ServicesDependedOn

 ------ ----------- -----------------

Adobe LM Service Stopped Win32OwnProcess {}

Adobe Version C... Running Win32OwnProcess {}

Adobe Version C... Stopped Win32OwnProcess {}

WS : 6696960

PM : 2437120

NPM : 3832

Id : 808

PriorityClass :

HandleCount : 147

WorkingSet : 6696960

PagedMemorySize : 2437120

PrivateMemorySize : 2437120

VirtualMemorySize : 58609664

get-service | get-member -membertype *property

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

CanPauseAndContinue Property System.Boolean CanPauseAndContinue

{get;}

CanShutdown Property System.Boolean CanShutdown {get;}

CanStop Property System.Boolean CanStop {get;}

Container Property System.ComponentModel.IContainer

DependentServices Property System.ServiceProcess.ServiceController

DisplayName Property System.String DisplayName {get;set;}

MachineName Property System.String MachineName {get;set;}

ServiceHandle Property System.Runtime.InteropServices.SafeHand

ServiceName Property System.String ServiceName {get;set;}

ServicesDependedOn Property System.ServiceProcess.ServiceController

ServiceType Property System.ServiceProcess.ServiceType

Site Property System.ComponentModel.ISite Site

Status Property System.ServiceProcess.ServiceController

get-service | format-table Name, Status, ServiceType, ServicesDependedOn

Name Status ServiceType ServicesDependedOn

------ ----------- -----------------

Adobe LM Service Stopped Win32OwnProcess {}

Adobe Version C... Running Win32OwnProcess {}

Adobe Version C... Stopped Win32OwnProcess {}

CHAPTER 2 Getting the Most from Windows PowerShell42

AeLookupSvc Running Win32ShareProcess {}

AlertService Running ...ractiveProcess {}

ALG Stopped Win32OwnProcess {}

AOL ACS Running ...ractiveProcess {}

Appinfo Stopped Win32ShareProcess {ProfSvc, RpcSs}

Apple Mobile De... Running Win32OwnProcess {Tcpip}

AppMgmt Stopped Win32ShareProcess {}

AudioEndpointBu... Running Win32ShareProcess {PlugPlay}

Audiosrv Running Win32ShareProcess {AudioEndpoint...

BFE Running Win32ShareProcess {RpcSs}

BITS Running Win32ShareProcess {EventSystem, ...

Bonjour Service Running Win32OwnProcess {Tcpip}

Browser Running Win32ShareProcess {LanmanServer,...

CertPropSvc Running Win32ShareProcess {RpcSs}

clr_optimizatio... Stopped Win32OwnProcess {}

COMSysApp Stopped Win32OwnProcess {SENS, EventSy...

In addition to formatting output for display, you might want to group and sort
objects. All the formatting cmdlets include the –GroupBy parameter, which allows
you to group output based on a specifi ed property.

Using the –GroupBy parameter produces the same results as sending the
output to the Group-Object cmdlet and then sending the output to a formatting
cmdlet. However, these techniques probably won’t generate the output you are
looking for because these approaches generate a new header each time a new
value is encountered for the specifi ed property. For example, with the Get-Service
cmdlet, you can group services by status, such as Running or Stopped, by using
the following command:

get-service | format-list –groupby status

 Status: Stopped

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanShutdown : False

CanStop : False

ServiceType : Win32ShareProcess

 Status: Running

Name : Wlansvc

DisplayName : WLAN AutoConfig

Status : Running

DependentServices : {}

ServicesDependedOn : {Eaphost, RpcSs, Ndisuio, nativewifip}

AeLookupSvc Running Win32ShareProcess {}

AlertService Running ...ractiveProcess {}

ALG Stopped Win32OwnProcess {}

AOL ACS Running ...ractiveProcess {}

Appinfo Stopped Win32ShareProcess {ProfSvc, RpcSs}

Apple Mobile De... Running Win32OwnProcess {Tcpip}

AppMgmt Stopped Win32ShareProcess {}

AudioEndpointBu... Running Win32ShareProcess {PlugPlay}

Audiosrv Running Win32ShareProcess {AudioEndpoint...

BFE Running Win32ShareProcess {RpcSs}

BITS Running Win32ShareProcess {EventSystem, ...

Bonjour Service Running Win32OwnProcess {Tcpip}

Browser Running Win32ShareProcess {LanmanServer,...

CertPropSvc Running Win32ShareProcess {RpcSs}

clr_optimizatio... Stopped Win32OwnProcess {}

COMSysApp Stopped Win32OwnProcess {SENS, EventSy...

get-service | format-list –groupby status

 Status: Stopped

Name : WinRM

DisplayName : Windows Remote Management (WS-Management)

Status : Stopped

DependentServices : {}

ServicesDependedOn : {RPCSS, HTTP}

CanPauseAndContinue : False

CanShutdown : False

CanStop : False

ServiceType : Win32ShareProcess

 Status: Running

Name : Wlansvc

DisplayName : WLAN AutoConfig

Status : Running

DependentServices : {}

ServicesDependedOn : {Eaphost, RpcSs, Ndisuio, nativewifip}

 Getting the Most from Windows PowerShell CHAPTER 2 43

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

ServiceType : Win32ShareProcess

 When you use Group-Object and group by status, you get a different result
entirely:

get-service | group-object status

Count Name Group

----- ---- -----

 68 Stopped {System.ServiceProcess.ServiceControll

 89 Running {System.ServiceProcess.ServiceControll

 Although both outputs can be useful, neither produces the result you need
if you want to see all stopped services and all started services in sequence. The
workaround is to sort the objects fi rst and then group them. You sort objects by us-
ing the Sort-Object cmdlet. Sort-Object supports sorting on a single property and
sorting on multiple properties. You specify the property or properties to sort on
with the –Property parameter and separate multiple properties with commas. For
example, if you want to sort services by status and name, you can use the following
command:

get-service | sort-object status, name | format-table –groupby status

 Status: Stopped

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Stopped Adobe Version C... Adobe Version Cue CS3

Stopped ALG Application Layer Gateway Service

Stopped Appinfo Application Information

Stopped AppMgmt Application Management

Stopped clr_optimizatio... Microsoft .NET Framework NGEN v2.0....

Stopped COMSysApp COM+ System Application

Stopped DFSR DFS Replication

Stopped dot3svc Wired AutoConfig

 Status: Running

Status Name DisplayName

------ ---- -----------

Running Adobe Version C... Adobe Version Cue CS2

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Running AOL ACS AOL Connectivity Service

Running Apple Mobile De... Apple Mobile Device

CanPauseAndContinue : False

CanShutdown : True

CanStop : True

ServiceType : Win32ShareProcess

get-service | group-object status

Count Name Group

----- ---- -----

 68 Stopped {System.ServiceProcess.ServiceControll

 89 Running {System.ServiceProcess.ServiceControll

get-service | sort-object status, name | format-table –groupby status

 Status: Stopped

Status Name DisplayName

------ ---- -----------

Stopped Adobe LM Service Adobe LM Service

Stopped Adobe Version C... Adobe Version Cue CS3

Stopped ALG Application Layer Gateway Service

Stopped Appinfo Application Information

Stopped AppMgmt Application Management

Stopped clr_optimizatio... Microsoft .NET Framework NGEN v2.0....

Stopped COMSysApp COM+ System Application

Stopped DFSR DFS Replication

Stopped dot3svc Wired AutoConfig

 Status: Running

Status Name DisplayName

------ ---- -----------

Running Adobe Version C... Adobe Version Cue CS2

Running AeLookupSvc Application Experience

Running AlertService Intel(R) Alert Service

Running AOL ACS AOL Connectivity Service

Running Apple Mobile De... Apple Mobile Device

CHAPTER 2 Getting the Most from Windows PowerShell44

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

By default, properties are sorted in ascending order. You can sort in descending
order with the –Descending parameter. For example, with the Get-Process cmdlet,
sorting the working set in descending order can help you identify processes that are
using the most resources on the computer. The command to do this is:

get-process | sort-object ws -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 481 22 97236 79804 371 4.31 5276 powershell_ise

 1057 39 84208 78912 279 17.94 3664 iexplore

 743 16 69532 74688 188 1120 svchost

 1377 44 62880 73172 218 1132 svchost

 763 14 89156 66536 347 784 VersionCueCS2

 459 12 58148 64140 201 7.88 5520 powershell

 596 23 39208 63676 412 110.25 5400 WINWORD

 614 27 33284 56512 421 5.22 5776 OUTLOOK

 739 0 0 55780 68 4 System

 1113 12 45712 43988 154 2560 SearchIndexer

 588 19 26768 34592 193 5.33 1704 explorer

 378 13 54952 34056 132 1004 svchost

By default, properties are sorted using case-insensitive sorting. You can use case-
sensitive sorting by adding the –CaseSensitive parameter. Finally, when you want to
view only the unique values of a property, you can add the –Unique parameter. This
eliminates multiple occurrences of members of a specifi ed collection with the same
value. When you are sorting based on object properties, this means only unique
values for specifi ed properties are returned, which may be what you want when you
are sorting business names but probably isn’t what you want when you are sorting
process names. To see why, enter the following command to display a name-sorted
list of running processes:

get-process | sort-object name

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 658 6 1720 5160 95 592 csrss

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

get-process | sort-object ws -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 481 22 97236 79804 371 4.31 5276 powershell_ise

 1057 39 84208 78912 279 17.94 3664 iexplore

 743 16 69532 74688 188 1120 svchost

 1377 44 62880 73172 218 1132 svchost

 763 14 89156 66536 347 784 VersionCueCS2

 459 12 58148 64140 201 7.88 5520 powershell

 596 23 39208 63676 412 110.25 5400 WINWORD

 614 27 33284 56512 421 5.22 5776 OUTLOOK

 739 0 0 55780 68 4 System

 1113 12 45712 43988 154 2560 SearchIndexer

 588 19 26768 34592 193 5.33 1704 explorer

 378 13 54952 34056 132 1004 svchost

get-process | sort-object name

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 658 6 1720 5160 95 592 csrss

 Getting the Most from Windows PowerShell CHAPTER 2 45

 57 2 884 2860 23 2100 svchost

 306 24 17576 21816 86 1828 svchost

 680 20 20688 24184 119 1524 svchost

 135 5 2764 6036 52 2112 svchost

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

 In the output, you’ll likely see multiple occurrences of some processes, such as
powershell or svchost. If you enter the following command:

get-process | sort-object name –unique

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 57 2 884 2860 23 2100 svchost

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

 In the output, you’ll see only the fi rst occurrence of each process, which doesn’t
give you a complete picture of how many processes are running and what resources
are being used by those processes.

Writing to Output Streams

 Windows PowerShell supports several Write cmdlets for writing to different output
streams. The fi rst thing to know about these cmdlets is that they don’t actually ren-
der the output. They simply pipeline (send) the output to a specifi ed output stream.
Although some output streams modify formatting of the output, the job of actually
rendering and fi nalizing output belongs to the Output cmdlets discussed in the next
section.

 The available output streams include the following:

 Standard output stream

 Verbose message stream

 Warning message stream

 Debugging message stream

 Error stream

 57 2 884 2860 23 2100 svchost

 306 24 17576 21816 86 1828 svchost

 680 20 20688 24184 119 1524 svchost

 135 5 2764 6036 52 2112 svchost

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

get-process | sort-object name –unique

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 586 8 22100 19900 132 652 csrss

 57 2 884 2860 23 2100 svchost

 105 4 1436 4076 46 640 wininit

 147 4 2380 6540 56 808 winlogon

 598 23 39240 63696 413 111.77 5400 WINWORD

CHAPTER 2 Getting the Most from Windows PowerShell46

Explicitly Writing Output

You can explicitly write output using one of the following output cmdlets:

 Write-Host Writes to the standard output stream and allows you to set the
background color and foreground color for text. By default, any text you
write is terminated with a newline character. Use –NoNewLine to write text
without inserting a newline character. Use –Separator to specify a string to
output between objects you are displaying. Use –Object to specify the object
or string literal to display.

Write-Host [-BackgroundColor Color] [-ForegroundColor Color]
[-NoNewline] [-Separator Object] [[-Object] Object]

 Write-Output Sends a specifi ed object down the pipeline to the next com-
mand or for display in the console. Because Write-Output accepts an input
object, you can pipeline objects to it, and it in turn will pipeline objects to
the next command or the console as appropriate.

Write-Output [[-InputObject] Object]

The main reason to use Write-Host is to take advantage of the formatting op-
tions it provides, which include alternative text and background colors. You use the
–BackgroundColor parameter to set the background color for output text and the
–ForegroundColor parameter to set the text color. The available colors are:

 Black, DarkBlue, DarkGreen, DarkCyan

 DarkRed, DarkMagenta, DarkYellow, Gray

 DarkGray, Blue, Green, Cyan

 Red, Magenta, Yellow, White

In the following example, you specify that you want black text on a yellow back-
ground:

write-host –backgroundcolor yellow –foregroundcolor black "This is text!"

This is text!

NOTE The Write-Host cmdlet writes output to the application that is hosting Power-

Shell. Typically, this is the PowerShell console (powershell.exe) or the PowerShell

 application (powershell_ise.exe). Other applications can host the PowerShell engine,

and those applications may handle Write-Host output in a different way. This means

that you’ll want to use Write-Host only when you know which host application will be

used and how the host application will handle Write-Host output.

Write-Host [-BackgroundColor Color] [-ForegroundColor Color]
[-NoNewline] [-Separator Object] [[-Object] Object]

Write-Output [[-InputObject] Object]

write-host –backgroundcolor yellow –foregroundcolor black "This is text!"

This is text!

 Getting the Most from Windows PowerShell CHAPTER 2 47

 The Write-Output cmdlet also writes to the standard output stream. Unlike
Write-Host, which does not accept input objects, Write-Output accepts objects as
input. However, the purpose of Write-Output is simply to send a specifi ed object
to the next command in the pipeline. If the command is the last in the pipeline, the
object is displayed on the console.

 One situation in which to use Write-Output is when you want to be explicit
about what you are writing to output. For example:

get-process | write-output

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 Here, you pipeline the output of Get-Process to Write-Output to show you are
writing output.

 When you are using variables, Write-Output is also helpful for being explicit
about output you are writing. Consider the following example:

$p = get-process; $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

 Here you create the $p variable, store Process objects in it, and then write those
objects to the output. To be explicit about the write operation, you can change
the previous line of code to read as follows:

$p = get-process; write-output $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

get-process | write-output

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

$p = get-process; $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

$p = get-process; write-output $p

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1292 3856 51 0.00 2204 acrotray

 139 4 2556 7356 75 1380 AlertService

CHAPTER 2 Getting the Most from Windows PowerShell48

Using Other Output Streams

When you want to work with output streams other than the standard output stream,
use the following Write cmdlets:

 Write-Debug Writes debug messages to the console from a script or
command. By default, debug messages are not displayed in the console
and do not cause execution to halt. You can display debug messages using
the – Debug parameter (which is common to all cmdlets) or the $Debug-
Preference variable. The –Debug parameter overrides the value of the
$ DebugPreference variable for the current command.

Write-Debug [-message] DebugMessage

 Write-Error Writes error messages to the console from a script or com-
mand. By default, error messages are displayed in the console but do not
cause execution to halt. You can modify the behavior using the –ErrorAction
parameter (which is common to all cmdlets) or the $ErrorActionPreference
variable. The –ErrorAction parameter overrides the value of the $ErrorAction-
Preference variable for the current command.

Write-Error -ErrorRecord ErrorRecord [AddtlParams]

Write-Error [-TargetObject Object] [-Message] String
[-ErrorId String] [AddtlParams]

Write-Error -Exception Exception [-Category String] [AddtlParams]

AddtlParams=
[-CategoryTargetName String] [-CategoryTargetType String]
[-CategoryReason String] [-CategoryActivity String]
[-RecommendedAction String]

 Write-Warning Writes warning messages to the console from a script
or command. By default, warning messages are displayed in the console
but do not cause execution to halt. You can modify the behavior using
the –WarningAction parameter (which is common to all cmdlets) or the
$ WarningPreference variable. The –WarningAction parameter overrides the
value of the $WarningPreference variable for the current command.

Write-Warning [-message] WarningMessage

 Write-Verbose Writes verbose messages to the console from a script or
command. By default, verbose messages are not displayed in the console
and do not cause execution to halt. You can display verbose messages
using the –Verbose parameter (which is common to all cmdlets) or the

Write-Debug [-message] DebugMessage

Write-Error -ErrorRecord ErrorRecord [d AddtlParams]

Write-Error [-TargetObject Object] [-Message] String
[-ErrorId String] [AddtlParams]

Write-Error -Exception Exception [-Category String] [AddtlParams]

AddtlParams=
[-CategoryTargetName String] [-CategoryTargetType String]
[-CategoryReason String] [-CategoryActivity String]
[-RecommendedAction String]

Write-Warning [-message] WarningMessage

 Getting the Most from Windows PowerShell CHAPTER 2 49

$VerbosePreference variable. The –Verbose parameter overrides the value
of the $VerbosePreference variable for the current command.

Write-Verbose [-message] VerboseMessage

 Write-Debug, Write-Error, Write-Warning, and Write-Verbose can each be man-
aged using either a common parameter or a preference variable. In every case, the
related parameter accepts a value of $true or $false, and the preference variable
accepts one of the following values:

 Stop

 Inquire

 Continue

 SilentlyContinue

 For example, the $DebugPreference variable determines how PowerShell handles
debugging messages. You can specify:

 $DebugPreference=Stop to display debug messages and stop executing.

 $DebugPreference=Inquire to display debug messages that ask whether you
want to continue.

 $DebugPreference=Continue to display debug messages and continue with
execution.

 $DebugPreference=SilentlyContinue to not display debug messages and
continue execution without interruption.

 The –Debug parameter overrides the value of the $DebugPreference variable
for the current command. You can specify –Debug:$true or –Debug to turn on
debugging, or you can specify –Debug:$false to suppress the display of debugging
messages when the value of $DebugPreference is not SilentlyContinue.

Rendering and Finalizing the Output

 Whether you enter a single cmdlet, send output to other cmdlets using piping, or format
output explicitly, the fi nal part of parsing and displaying output is a hidden background
call to an output cmdlet. By default, as the last part of the execution process, PowerShell
calls the default output cmdlet, which is typically the Out-Host cmdlet.

 You can explicitly specify the output cmdlet to use by sending the output to one
of the following output cmdlets:

 Out-File Sends the output to a fi le. You must specify the path to the out-
put fi le to use. If the output fi le exists, you can use the –Force parameter to
overwrite it or the –Append parameter to add the output to the fi le. You can
use Out-File instead of the standard redirection techniques discussed in the
next section.

Out-File [-InputObject Object] [-NoClobber] [-Width NumChars]
[-Force] [-Append] [-FilePath] String [[-Encoding] String]

Write-Verbose [-message] VerboseMessage

Out-File [-InputObject Object] [-NoClobber] [-Width NumChars]
[-Force] [-Append] [-FilePath] String [[-Encoding]g String]

CHAPTER 2 Getting the Most from Windows PowerShell50

 Out-GridView Sends the output to a grid view window and displays the
output in an interactive table. The grid view window supports sorting, grouping,
copying, and fi ltering.

Out-GridView [-InputObject Object]

 Out-Host Sends the output to the command line. Add the –Paging pa-
rameter to display one page of output at a time (similar to using the More
command in the command shell).

Out-Host [-InputObject Object] [-Paging]

 Out-Null Sends the output to the null port. This deletes the output without
displaying it, which is useful for output that you don’t need.

Out-Null [-InputObject Object]

 Out-Printer Sends the output to the default printer or to a named printer.
Use the –Name parameter to specify the UNC path to the printer to use, such
as –Name “\\PrintServer85\LaserP45”.

Out-Printer [-InputObject Object] [[-Name] String]

 Out-String Converts the output of all objects to a single string and then
sends the result to the console. Use the –Stream parameter to send the
strings for each object separately. Use the –Width parameter to specify the
number of characters to display in each line of output. Any additional char-
acters are truncated. The default width is 80 characters.

Out-String [-InputObject Object] [-Width NumChars] [-Stream]

All these cmdlets accept input objects, which means you can pipeline objects to
them. The following example writes events from the application log to the C:\logs\
app\current.txt fi le:

get-eventlog –newest 10 –logname application | out-file –filepath
c:\logs\app\current.txt

All these cmdlets also allow you to use the –InputObject parameter to specify the
input object. The following example displays the currently running processes in a
grid view window:

$p = get-process; out-gridview –inputobject $p

Because these commands do not accept positional input, you must always explicitly
declare the –InputObject parameter. Figure 2-1 shows the command output in grid view.

Out-GridView [-InputObject Object]

Out-Host [-InputObject Object] [-Paging]

Out-Null [-InputObject Object]

Out-Printer [-InputObject Object] [[-Name] String]

Out-String [-InputObject Object] [-Width NumChars] [-Stream]

get-eventlog –newest 10 –logname application | out-file –filepath
c:\logs\app\current.txt

$p = get-process; out-gridview –inputobject $p

 Getting the Most from Windows PowerShell CHAPTER 2 51

FIGURE 2-1 Command output is displayed in the grid view.

More on Redirecting Input, Output, and Error

By default, commands take input from the parameters specified when they are
called by PowerShell and then send their output, including errors, to the standard
console window. Sometimes, however, you’ll want to take input from another source
or send output to a file or another output device, such as a printer. You might also
want to redirect errors to a file rather than have them displayed in the console window.
In addition to using the Output cmdlets discussed previously, you can perform
these and other redirection tasks by using the techniques introduced in Table 2-3
and discussed in the examples that follow.

TABLE 2-3 Redirection Techniques for Input, Output, and Errors

REDIRECTION TECHNIQUE DESCRIPTION

command1 | command2 Sends the output of the first command to be the
input of the second command.

command > [path]filename Sends output to the named file, creating the file
if necessary or overwriting it if it already exists.

command >> [path]filename Appends output to the named file if it exists or
creates the file and then writes to it.

 CHAPTER 2 Getting the Most from Windows PowerShell52

TABLE 2-3 Redirection Techniques for Input, Output, and Errors

REDIRECTION TECHNIQUE DESCRIPTION

command 2> [path]filename Creates the named file and sends any error out-
put to it. If the file exists, it is overwritten.

command 2>> [path]filename Appends errors to the named file if it exists or
creates the file and then writes errors to it.

command 2>&1 Sends error output to the same destination as
standard output.

Piping is the primary redirection technique, and you’ll find examples of piping
throughout this chapter. Another command redirection technique is to send output
to a file. You can do this with the Out-File cmdlet. You also can use > to create or
overwrite a named file, or >> to create or append data to a named file. For example,
if you want to write the current status of running processes to a file, you can use the
following command:

get-process > processes.txt

Unfortunately, if there is a file in the current directory with the same file name,
this command overwrites the file and creates a new one. If you want to append this
information to an existing file rather than overwrite an existing file, change the
command text to read as follows:

get-process >> processes.txt

By default, errors from commands are written as output on the command line.
As discussed previously, you can manage the error stream using Write-Error, the
–ErrorAction parameter (which is common to all cmdlets), or the $ErrorActionPreference
variable. Another way to redirect standard error is to tell PowerShell that errors
should go to the same destination as standard output. To do this, type the 2>&1

redirection symbol as shown in this example:

chkdsk /r > diskerrors.txt 2>&1

Here, you send standard output and standard error to a file named Diskerrors.
txt. If you want to track only errors, you can redirect only the standard error. In this
example, standard output is displayed at the command line and standard error is
sent to the file Diskerrors.txt:

chkdsk /r 2> diskerrors.txt

If the error file exists, it is overwritten automatically. To append to an existing file
rather than overwrite it, you can use the append technique shown in the following
example:

chkdsk /r 2>> diskerrors.txt

53

CHAP TER 3

Managing Your Windows
PowerShell Environment

Using Profiles 53

Navigating Windows PowerShell Extensions 60

When you start Windows PowerShell, the working environment is loaded
automatically. Many features of the working environment come from profiles,

which are a type of script that run when you start PowerShell. However, the working
environment is also determined by imported modules, snap-ins, providers, command
paths, file extensions, and file associations. You’ll learn about these features of
 PowerShell in this chapter.

Additionally, when you work remotely, your working environment is different
from when you work locally. For this reason, you’ll use different techniques when
you work remotely than when you are working on your local computer. Not only
does PowerShell V2 support remote execution of commands, but PowerShell V2
also supports remote sessions and remote background jobs. You’ll learn about
these features of PowerShell in Chapter 4, “Using Sessions, Jobs, and Remoting.”

Using Profiles

Profiles end with the .ps1 file extension. Generally speaking, profiles are always
loaded when you work with Windows PowerShell, but there are specific excep-
tions. For example, when testing a script, you might want to invoke PowerShell
without loading a profile and then run the script. Doing so will help ensure that
you’ve coded the script properly and haven’t used any profile-specific settings.

You use profiles to store frequently used elements, including:

 Aliases An alias is an alternate name for a command, function, script, file,
executable, or other command element. After you create an alias, you can
use the alias as a keystroke shortcut or friendly name to invoke the related
command element. For example, gsv is an alias for Get-Service. Instead of

CHAPTER 3 Managing Your Windows PowerShell Environment54

entering get-service winrm to get information about the WinRM service,
you could enter gsv winrm. To list all available aliases, enter get-alias at the
PowerShell prompt.

Get-Alias [-Exclude Strings] [[-Name Strings] |
[-Definition Strings]] [-Scope String]

 Functions A function is a named set of PowerShell commands. When you
call a function by its name, the set of commands runs just as though you
had typed each command at the command line. For example, you could
create a function to examine critical processes and services on a computer
and generate a report. By adding the function to a profi le, you would then
be able to run the function at any time by entering the function name at the
PowerShell prompt. To list all available functions, enter get-childitem function:
at the PowerShell prompt.

Get-ChildItem [[-Filter] Strings] [-LiteralPath] Strings [AddtlParams]

Get-ChildItem [[-Path] Strings] [[-Filter] Strings] [AddtlParams]

AddtlParams=
[-Exclude Strings] [-Force] [-Include Strings] [-Name] [-Recurse]

 Variables A variable is a placeholder for a value. In addition to environment
variables from the operating system, PowerShell supports automatic, prefer-
ence, and user-created variables. To reference a variable at the prompt or
in scripts, you must precede the variable’s name with a dollar sign ($). For
example, to reference the home variable, you must enter $home. To list all
available variables, enter get-variable at the PowerShell prompt.

Get-Variable [-Scope String] [-Exclude Strings] [-Include Strings]
[-ValueOnly] [[-Name] Strings]

 NOTE Your scripts and command text can use any of the available variables. Automatic

variables are fi xed and are used to store state information. Preference variables are

changeable and are used to store working values for PowerShell confi guration settings.

By default, variables you create exist only in the current session and are lost when you

exit or close the session. To maintain user-created variables, you must store them in a

profi le. For detailed information on variables, see “Working with Variables and Values”

in Chapter 5, “Navigating Core PowerShell Structures.”

 TIP You can view the value of an automatic or a preference variable simply by typing its

name at the PowerShell prompt. For example, to see the current value of the $home variable,

enter $home at the PowerShell prompt. Environment variables are accessed in a slightly

different way. You must reference $env: and then the name of the variable. For example, to

display the value of the %ComputerName% variable, you must enter $env:computername.

Get-Alias [-Exclude Strings] [[-Name Strings] |
[-Definition Strings]] [-Scope String]

Get-ChildItem [[-Filter] Strings] [-LiteralPath] Strings [AddtlParams]s

Get-ChildItem [[-Path] Strings] [[-Filter] Strings] [AddtlParams]

AddtlParams=
[-Exclude Strings] [-Force] [-Include Strings] [-Name] [-Recurse]

Get-Variable [-Scope String] [-Exclude Strings] [-Include Strings]
[-ValueOnly] [[-Name] Strings]

 Managing Your Windows PowerShell Environment CHAPTER 3 55

Creating Profiles

You can create a profile by using a standard text editor. Simply enter the commands
that define the aliases, functions, variables, or other elements you want to use, and
then save the file with the appropriate file name in the appropriate location on your
computer. That’s it. This means you can use the following technique to create a
profile:

 1. In Notepad or any other text editor, enter the command text for the aliases,
functions, variables, and any other command elements you want to use.

 2. Save the file with the appropriate file name and file extension for a profile,
such as Profile.ps1.

 3. Copy the profile file to the appropriate location, such as a folder named
$pshome.

When you are working with the PowerShell console and the PowerShell applica-
tion, there are six types of profiles you need to know about. Table 3-1 summarizes
these profiles. $home and $pshome are automatic variables. The $home variable
stores the current user’s home directory. The $pshome variable stores the installa-
tion directory for PowerShell.

TABLE 3-1 Common PowerShell Profiles

PROFILE TYPE DESCRIPTION LOCATION

Current User,
PowerShell
Console

A profile specific to
the user account for
the current user con-
text and applicable
only to the Power-
Shell console.

Directory: $home\[My]Documents\
WindowsPowerShell

Name: profile.ps1

Current User,
PowerShell
ISE

A profile specific to
the user account for
the current user con-
text and applicable
only to the Power-
Shell application.

Directory: $home\[My]Documents\
WindowsPowerShell

Name: Microsoft.PowerShellISE_profile.ps1

Current User,
All Hosts

A profile specific to
the current user con-
text and applicable
to both the Power-
Shell console and
the PowerShell
 application.

Directory: $home\[My]Documents

Name: profile.ps1

 CHAPTER 3 Managing Your Windows PowerShell Environment56

TABLE 3-1 Common PowerShell Profiles

PROFILE TYPE DESCRIPTION LOCATION

All Users,
PowerShell
Console

A profile applicable to
all users but specific
to the PowerShell
console.

Directory: $pshome

Name: Microsoft.PowerShell_profile.ps1

All Users,
PowerShell
ISE

A profile applicable to
all users but specific
to the PowerShell
application.

Directory: $pshome

Name: Microsoft.PowerShellISE_profile.ps1

All Users, All
Hosts

A profile applicable to
all users for both the
PowerShell console
and the PowerShell
application.

Directory: $pshome

Name: profile.ps1

When PowerShell starts, PowerShell looks for profiles in the specified locations
and runs the profiles in the following order:

 1. The All Users, All Hosts profile

 2. Either the All Users, PowerShell or All Users, PowerShell ISE profile as
 appropriate

 3. The Current User, All Hosts profile

 4. Either the Current User, PowerShell or Current User, PowerShell ISE profile as
appropriate

The order of the profiles’ execution determines the precedence order for any
conflicts. Whenever there is a conflict, the last value written wins. Following this, an
alias defined in the Current User, PowerShell profile or the Current User, PowerShell
ISE profile has precedence over any conflicting entries in any other profile.

Understanding Execution Order

Whenever you work with Windows PowerShell and PowerShell profiles, don’t over-
look the importance of execution order and the PATH environment variable. It is
important to keep in mind where the commands you are using come from. Power-
Shell searches for commands in the following order:

 1. Aliases PowerShell looks for alternate built-in or profile-defined aliases for
the associated command name. If an alias is found, the command to which
the alias is mapped is run.

 2. Functions PowerShell looks for built-in or profile-defined functions with
the command name. If a function is found, the function is executed.

 Managing Your Windows PowerShell Environment CHAPTER 3 57

 3. Cmdlets or language keywords PowerShell looks for built-in cmdlets or
language keywords with the command name. If a cmdlet or language keyword
is found, the appropriate action is taken.

 4. Scripts PowerShell looks for scripts with the .ps1 extension. If a PowerShell
script is found, the script is executed.

 5. External commands and files PowerShell looks for external commands,
non-PowerShell scripts, and utilities with the command name. If an external
command or utility is found in a directory specified by the PATH environment
variable, the appropriate action is taken. If you enter a file name, PowerShell
uses file associations to determine whether a helper application is available
to open the file.

Because of the execution order, contrary to what you might think, when you
type dir and then press Enter to get a listing of the current directory, you are not
running the dir command that is built into the Windows command shell (cmd.exe).
Instead, when you type dir at the PowerShell prompt, you are actually running a
PowerShell command. This command is called Get-ChildItem. Why does this occur?
Although PowerShell does pass commands through to the Windows command
shell, it does so only when a PowerShell command or an alias to a PowerShell
command is not available. Because dir is a registered alias of Get-ChildItem, you are
actually running Get-ChildItem when you enter dir.

Working with the Command Path

The Windows operating system uses the command path to locate executables. The
types of files that Windows considers to be executables are determined by the file
extensions for executables. You can also map file extensions to specific applications
by using file associations.

Managing the Command Path

You can view the current command path for executables by displaying the value
of the PATH environment variable. To do this, open a PowerShell console, type
$env:path on a line by itself, and then press Enter. The results should look similar to
the following:

C:\Windows\System32;C:\Windows;C:\Windows\System32\Wbem;
C:\Windows\System32\WindowsPowerShell\v1.0\

NOTE Observe the use of the semicolon (;) to separate individual paths. PowerShell

uses the semicolon to determine where one file path ends and another begins.

The command path is set during logon using system and user environment vari-
ables, namely the %PATH% variable. The order in which directories are listed in the

 CHAPTER 3 Managing Your Windows PowerShell Environment58

path indicates the search order PowerShell uses when it searches for executables. In
the previous example, PowerShell searches in this order:

 1. C:\Windows\System32

 2. C:\Windows

 3. C:\Windows\System32\Wbem

 4. C:\Windows\System32\PowerShell\v1.0

You can permanently change the command path in the system environment by
using the SETX command. For example, if you use specific directories for scripts or
applications, you may want to update the path information. You can do this by using
the SETX command to add a specific path to the existing path, such as setx PATH

“%PATH%;C:\Scripts”.

NOTE Observe the use of the quotation marks and the semicolon. The quotation

marks are necessary to ensure that the value %PATH%;C:\Scripts is read as the second

argument for the SETX command. As mentioned previously, the semicolon is used to

specify where one file path ends and another begins. Because the command path is

set when you open the PowerShell console, you must exit the console and open a new

console to load the new path. If you’d rather not exit the console, you can update the

PATH environment variable for the console as discussed in “Using External Commands”

in Chapter 1, “Introducing Windows PowerShell.”

In this example, the directory C:\Scripts is appended to the existing command
path, and the sample path listed previously would be modified to read as follows:

C:\Windows\System32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\
System32\PowerShell\v1.0;C:\Scripts

Don’t forget about the search order that Windows uses. Because the paths are
searched in order, the C:\Scripts directory will be the last one searched. This can
sometimes slow execution of your scripts. To help Windows find your scripts faster,
you may want C:\Scripts to be the first directory searched. In this case, you could set
the command path by using the following command:

setx PATH "C:\Scripts;%PATH%"

Be careful when setting the command path. It is easy to overwrite all path
information accidentally. For example, if you don’t specify the %PATH% environ-
ment variable when setting the path, you will delete all other path information. One
way to ensure that you can easily re-create the command path is to keep a copy
of the command path in a file. To write the current command path to a file, type
$env:path > orig_path.txt. Keep in mind that if you are using a standard console
rather than an administrator console, you won’t be able to write to secure system
locations. In this case, you can write to a subdirectory to which you have access or
your personal profile. To write the command path to the PowerShell console, type
$env:path. Now you have a listing or a file that contains a listing of the original
command path.

 Managing Your Windows PowerShell Environment CHAPTER 3 59

Managing File Extensions and File Associations

File extensions are what allow you to execute external commands by typing just
their command name at the PowerShell prompt. Two types of file extensions are
used:

 File extensions for executables Executable files are defined with the
%PATHEXT% environment variable. You can view the current settings by
typing $env:pathext at the command line. The default setting is .COM;.EXE;.
BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC;.PSC1. With this setting, the com-
mand line knows which files are executables and which files are not, so you
don’t have to specify the file extension at the command line.

 File extensions for applications File extensions for applications are
referred to as file associations. File associations are what enable you to pass
arguments to executables and to open documents, spreadsheets, or other
application files by double-clicking file icons. Each known extension on a system
has a file association that you can view by typing cmd /c assoc followed by
the extension, such as cmd /c assoc .exe. Each file association in turn speci-
fies the file type for the file extension. This information can be viewed using
the FTYPE command followed by the file association, such as cmd /c ftype

exefile.

NOTE Observe that you call ASSOC and FTYPE via the command shell. The reason is

that they are internal commands for the command shell.

With executables, the order of file extensions sets the search order used by the
command line on a per-directory basis. Thus, if a particular directory in the com-
mand path has multiple executables that match the command name provided, a
.com file would be executed before a .exe file and so on.

Every known file extension on a system has a corresponding file association and
file type—even extensions for executables. In most cases, the file type is the exten-
sion text without the period, followed by the keyword file, such as cmdfile, exefile,
or batfile. The file association specifies that the first parameter passed is the com-
mand name and that other parameters should be passed on to the application.

You can look up the file type and file association for known extensions by using
the ASSOC and FTYPE commands. To find the association, type cmd /c assoc
 followed by the file extension that includes the period. The output of the ASSOC
command is the file type. So if you type cmd /c ftype association (where association is
the output of the ASSOC command), you’ll see the file type mapping. For example,
if you type cmd /c assoc .exe to see the file associations for .exe executables, you
then type cmd /c ftype exefile to see the file type mapping.

You’ll see the file association is set to

exefile="%1" %*

CHAPTER 3 Managing Your Windows PowerShell Environment60

Thus, when you run an .exe fi le, Windows knows the fi rst value is the command
that you want to run and anything else you’ve provided is a parameter to pass
along.

TIP File associations and types are maintained in the Windows registry and can be

set using the ASSOC and FTYPE commands, respectively. To create the fi le association,

type cmd /c assoc followed by the extension setting, such as cmd /c assoc .pl=perlfi le.

To create the fi le type, set the fi le type mapping, including how to use parameters

 supplied with the command name, such as cmd /c ftype perlfi le=C:\Perl\Bin\

Perl.exe “%1” %*.

Navigating Windows PowerShell Extensions

Windows PowerShell can be extended in several different ways. Typically, extensions
are in the form of PowerShell snap-ins that add PowerShell providers to the work-
ing environment. The data that a provider exposes appears in a drive that you can
browse. PowerShell V2 introduces module extensions, which must be imported
before you use them.

Working with Windows PowerShell Extensions

Cmdlets that you’ll use to work with Windows PowerShell snap-ins, providers, and
drives include:

 Add-PSSnapin Adds one or more registered snap-ins to the current session.
After you add a snap-in, you can use the cmdlets and providers that the
snap-in supports in the current session.

Add-PSSnapin [-PassThru] [-Name] Strings

 Export-Console Exports the names of PowerShell snap-ins in the current
session to a PowerShell console fi le (.psc1). You can add the snap-ins in the
console fi le to future sessions by using the –PSConsoleFile parameter of
PowerShell.exe.

Export-Console [-NoClobber] [-Force] [[-Path] String]

 Get-Module Gets information modules. The fi rst syntax shown in the fol-
lowing example gets information about imported modules that are on the
computer and available in the current session. The second syntax shown gets
information about available modules that you can use.

Get-Module [[-Name] Strings] [-All]
Get-Module [-ListAvailable [-Name] Strings] -Recurse

Add-PSSnapin [-PassThru] [-Name] Strings

Export-Console [-NoClobber] [-Force] [[-Path] String]

Get-Module [[-Name] Strings] [-All]
Get-Module [-ListAvailable [-Name] Strings] -Recurse

 Managing Your Windows PowerShell Environment CHAPTER 3 61

 Get-PSProvider Gets information about all or specifi ed providers that are
installed on the computer and available in the current session. Providers
are listed by name, capability, and drive.

Get-PSProvider [[-PSProvider] Strings]

 Get-PSSnapin Gets objects representing snap-ins that were added to the
current session or registered on the system. Snap-ins are listed in detection
order. You can register snap-ins using the InstallUtil tool included with
Microsoft .NET Framework 2.0.

Get-PSSnapin [-Registered] [[-Name] Strings]

 Import-Module Imports one or more available modules into the current
session. After you add a module, you can use the cmdlets and functions that
the module supports in the current session.

Import-Module [-Name] Strings [AddtlParams]
Import-Module [-Assembly] Assemblies [AddtlParams]
Import-Module [-ModuleInfo] ModGUIDs [AddtlParams]

AddtlParams=
[-Prefix String] [-Function Strings] [-Cmdlet Strings] [-Variable
Strings] [-Alias Strings] [-Force] [-PassThru] [-AsCustomObject]
[-Version Version] [-ArgumentList Objects]

 New-Module Creates a module based on script blocks, functions, and
cmdlets that you specify. Also available are New-ModuleManifest and Test-
ModuleManifest.

New-Module [-ScriptBlock] ScriptBlock [-Function Strings] [-Cmdlet
Strings] [-ReturnResult] [-AsCustomObject] [-ArgumentList Objects]

New-Module [-Name] String [-ScriptBlock] ScriptBlock [-Function
Strings] [-Cmdlet Strings] [-ReturnResult] [-AsCustomObject]
[-ArgumentList Objects]

 Remove-Module Removes a module that you added to the current session.

Remove-Module [-Name] Strings [-Force]
Remove-Module [-ModuleInfo] ModGUIDs [-Force]

 Remove-PSSnapin Removes a PowerShell snap-in that you added to the
current session. You cannot remove snap-ins that are installed with Windows
PowerShell.

Remove-PSSnapin [-PassThru] [-Name] Strings

Get-PSProvider [[-PSProvider] Strings]

Get-PSSnapin [-Registered] [[-Name] Strings]

Import-Module [-Name] Strings [AddtlParams]
Import-Module [-Assembly] Assemblies [AddtlParams]
Import-Module [-ModuleInfo] ModGUIDs [AddtlParams]

AddtlParams=
[-Prefix String] [-Function Strings] [-Cmdlet Strings] [-Variable
Strings] [-Alias Strings] [-Force] [-PassThru] [-AsCustomObject]
[-Version Version] [-ArgumentList Objects]

New-Module [-ScriptBlock] ScriptBlock [-Functionk Strings] [-Cmdlet
Strings] [-ReturnResult] [-AsCustomObject] [-ArgumentList Objects]

New-Module [-Name] String [-ScriptBlock]g ScriptBlock [-Functionk
Strings] [-Cmdlet Strings] [-ReturnResult] [-AsCustomObject]
[-ArgumentList Objects]

Remove-Module [-Name] Strings [-Force]
Remove-Module [-ModuleInfo] ModGUIDs [-Force]

Remove-PSSnapin [-PassThru] [-Name] Strings

 CHAPTER 3 Managing Your Windows PowerShell Environment62

Using Snap-ins

Windows PowerShell snap-ins are .NET programs that are compiled into DLL files.
Snap-ins can include providers, cmdlets, and functions. PowerShell providers are
.NET programs that provide access to specialized data stores so that you can access
the data stores from the command line. Before using a provider, you must install the
related snap-in and add it to your Windows PowerShell session.

PowerShell comes with a set of core snap-ins, but you can extend PowerShell
by adding snap-ins that contain additional providers and cmdlets. For example,
when you are working with servers and applications such as Microsoft Exchange
Server 2007 SP1 or later or SQL Server 2008, those servers and applications include
 extended command environments for PowerShell. Exchange Server 2007 SP1 or
later includes Exchange Management Shell, which is simply a PowerShell console
loaded with the snap-ins and environment used by Exchange Server. SQL Server
2008 or later includes SQL Server PowerShell, which is a PowerShell console loaded
with the snap-ins and environment used by SQL Server.

Similarly, when you add a snap-in, the providers and cmdlets that it contains
are immediately available for use in the current session. To ensure that a snap-in is
available in all future sessions, add the snap-in via your profile. You can also use the
Export-Console cmdlet to save the names of snap-ins to a console file. If you start a
console by using the console file, the named snap-ins are available.

To save the snap-ins from a session in a console file (.psc1), use the Export-
 Console cmdlet. For example, to save the snap-ins in the current session configuration
to the MyConsole.psc1 file in the current directory, enter the following command:

export-console MyConsole

The following command starts PowerShell with the MyConsole.psc1 console file:

powershell.exe -psconsolefile MyConsole.psc1

You can list the available snap-ins by entering get-pssnapin. To find the snap-in
for each Windows PowerShell provider, enter the following command:

get-psprovider | format-list name, pssnapin

To list the cmdlets in a snap-in, enter

get-command -module SnapinName

where SnapinName is the name of the snap-in you want to examine. The built-in
snap-ins are summarized in Table 3-2.

 Managing Your Windows PowerShell Environment CHAPTER 3 63

TABLE 3-2 Built-In PowerShell Snap-Ins

NAME DESCRIPTION

Microsoft.PowerShell.Core Contains providers and cmdlets
used to manage the basic features
of Windows PowerShell. Includes
the FileSystem, Registry, Alias,
Environment, Function, and Vari-
able providers and basic cmdlets
like Get-Help, Get-Command, and
Get-History.

Microsoft.PowerShell.Diagnostics Contains the cmdlets used to
read Windows event log and
configuration data, for example,
 Get-WinEvent.

Microsoft.PowerShell.Host Contains cmdlets used by the
Windows PowerShell host, such as
Start-Transcript and Stop-Transcript.

Microsoft.PowerShell.Management Contains cmdlets used to manage
Windows components, including
Get-Service and Get-ChildItem.

Microsoft.PowerShell.Security Contains cmdlets to manage Win-
dows PowerShell security, such as
Get-Acl, Get-AuthenticodeSignature,
and ConvertTo-SecureString

Microsoft.PowerShell.Utility Contains the cmdlets used to
manipulate objects and data, such
as Get-Member, Write-Host, and
Format-List.

Microsoft.PowerShell.WSMan.Management Contains the cmdlets used to
 manage WSMan operations,
such as Get-WSManInstance and
 Set-WSManInstance.

The built-in snap-ins are registered in the operating system and added to the
default session whenever you start Windows PowerShell. To use snap-ins that you
create or obtain from other sources, you must register them and add them to your
console session. To find registered snap-ins (other than the built-in snap-ins) on
your system or to verify that an additional snap-in is registered, enter the following
command:

get-pssnapin -registered

CHAPTER 3 Managing Your Windows PowerShell Environment64

You can add a registered snap-in to the current session by using the Add-
 PSSnapin cmdlet. For example, to add the SQL Server snap-in to the session, type
add-pssnapin sqlserver. Once you add the snap-in, its providers and cmdlets are
available in the console session. If you add the necessary Add-PSSnapin commands
to a relevant profi le, you can be sure that modules you want to use are always
loaded.

To remove a Windows PowerShell snap-in from the current session, use the
Remove-PSSnapin cmdlet. For example, to remove the SQL Server snap-in from
the current session, type remove-pssnapin sqlserver. This removes the snap-in
from the session. The snap-in is still loaded, but the providers and cmdlets that it
 supports are no longer available.

When you are performing administrative tasks or creating scripts for later use,
you’ll often want to ensure that a particular PowerShell snap-in is available before
you try to use its functions or cmdlets. The easiest way to do this is to attempt
to perform the action or run a script only if the snap-in is available. Consider the
 following example:

if (get-pssnapin -name ADRMS.PS.Admin -erroraction silentlycontinue)
 {

 Code to execute if the snap-in is available.

} else {

 Code to execute if the snap-in is not available.

}

Here, when the ADRMS.PS.Admin snap-in is available, the statement in parenthe-
ses evaluates to True, and any code in the related script block is executed. When the
ADRMS.PS.Admin snap-in is not available, the statement in parentheses evaluates
to False, and any code in the Else statement is executed. Note also that I set the
– ErrorAction parameter to SilentlyContinue so that error messages aren’t written to
the output if the snap-in is not found.

TIP The same technique can be used with providers and modules.

Using Providers

 The data that a provider exposes appears in a drive that you can browse much like
you browse a hard drive, allowing you to view, search though, and manage related
data. To list all providers that are available, type Get-PSProvider. Table 3-3 lists the
built-in providers. Note the drives associated with each provider.

if (get-pssnapin -name ADRMS.PS.Admin -erroraction silentlycontinue)
 {

 Code to execute if the snap-in is available.

} else {

Code to execute if the snap-in is not available.

}

 Managing Your Windows PowerShell Environment CHAPTER 3 65

TABLE 3-3 Built-In PowerShell Providers

PROVIDER DATA ACCESSED DRIVE

Alias Windows PowerShell
aliases

{Alias}

Certificate X509 certificates for digital
signatures

{Cert}

Environment Windows environment
variables

{Env}

FileSystem File system drives,
 directories, and files

{C, D, E, …}

Function Windows PowerShell
 functions

{Function}

Registry Windows registry {HKLM, HKCU}

Variable Windows PowerShell
variables

{Variable}

WSMan WS-Management {WSMan}

PowerShell includes a set of cmdlets that are specifically designed to manage the
items in the data stores that are exposed by providers. You use these cmdlets in the
same ways to manage all the different types of data that the providers make avail-
able to you. Table 3-4 provides an overview of these cmdlets.

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

Get-PSDrive Gets all or specified PowerShell drives in the current console.
This includes logical drives on the computer, drives mapped to
network shares, and drives exposed by Windows PowerShell
providers. Get-PSDrive does not get Windows mapped drives
that are added or created after you open PowerShell. However,
you can map drives using New-PSDrive, and those drives will
be available.

Get-PSDrive [-PSProvider Strings]
[-Scope String]
[[-LiteralName] | [-Name]] Strings

 CHAPTER 3 Managing Your Windows PowerShell Environment66

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

New-PSDrive Creates a PowerShell drive that is mapped to a location in a
data store, which can include a shared network folder, a local
directory, or a registry key. The drive is available only in the
 current PowerShell console.

New-PSDrive [-Credential Credential]
[-Description String]
[-Scope String] [-Name] String
[-PSProvider] String [-Root] String

Remove-PSDrive Removes a PowerShell drive that you added to the current
console session. You cannot delete Windows drives or mapped
network drives created by using other methods.

Remove-PSDrive [-Force]
[-PSProvider Strings] [-Scope String]
[[-LiteralName] | [-Name]] Strings

Get-ChildItem Gets the items and child items in one or more specified
 locations.

Get-ChildItem [[-Path] Strings]
[[-Filter] String] [AddtlParams]

Get-ChildItem [[-Filter] String]
[-LiteralPath] Strings [AddtlParams]

AddtlParams=
[-Exclude Strings] [-Force]
[-Include Strings] [-Name]
[-Recurse]

Get-Item Gets the item at the specified location.

Get-Item [[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings]

New-Item Creates a new item.

New-Item [-Credential Credential]
[-Force] [-ItemType String]
[-Path Strings] [-Value Object]
-Name String

 Managing Your Windows PowerShell Environment CHAPTER 3 67

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

Set-Item Changes the value of an item to the value specified in the
 command.

Set-Item [-Value] Object]
[[-LiteralPath] | [-Path] Strings
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

Remove-Item Deletes the specified item.

Remove-Item [[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-Recurse]

Move-Item Moves an item from one location to another.

Move-Item [[-Destination] String]
[[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

Rename-Item Renames an item in a Windows PowerShell provider
namespace.

Rename-Item [-Credential Credential]
[-Force] [-PassThru] [-Path] String
[-NewName] String

 CHAPTER 3 Managing Your Windows PowerShell Environment68

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

Copy-Item Copies an item from one location to another within a
namespace.

Copy-Item [[-Destination] String]
[[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Container] [-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]
[-Recurse]

Clear-Item Deletes the contents of an item but does not delete the item.

Clear-Item [[-LiteralPath] | [-Path]]
Strings [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings]

Invoke-Item Performs the default action on the specified item.

Invoke-Item [[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Include Strings]

Clear-
 ItemProperty

Deletes the value of a property but does not delete the
 property.

Clear-ItemProperty [[-LiteralPath]
| [-Path]] Strings [-Name] String
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

 Managing Your Windows PowerShell Environment CHAPTER 3 69

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

Copy-
 ItemProperty

Copies a property and value from a specified location to
 another location.

Copy-ItemProperty [[-LiteralPath] |
[-Path]] Strings [-Destination] String
[-Name] String [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

Get-
ItemProperty

Gets the properties of a specified item.

Get-ItemProperty [-Name] String
[[-LiteralPath] | [-Path]] Strings
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Include Strings]

Move-
 ItemProperty

Moves a property from one location to another.

Move-ItemProperty [[-LiteralPath] |
[-Path]] Strings
[-Destination] String [-Name] String
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

New-
 ItemProperty

Creates a property for an item and sets its value.

New-ItemProperty [-PropertyType String]
[-Value Object] [[-LiteralPath] |
[-Path]] Strings [-Name] String
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings]

 CHAPTER 3 Managing Your Windows PowerShell Environment70

TABLE 3-4 Cmdlets for Working with Data Stores

CMDLET DESCRIPTION

Remove-
 ItemProperty

Deletes the specified property and its value from an item.

Remove-ItemProperty [[-LiteralPath] |
[-Path]] Strings
[-Name] String [AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings]

Rename-Item-
Property

Renames the specified property of an item.

Rename-ItemProperty [[-LiteralPath] |
[-Path]] Strings
[-Name] String [-NewName] String
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

Set-ItemProperty Creates or changes the value of the specified property of an
item.

Set-ItemProperty -InputObject Object
[-LiteralPath] Strings [AddtlParams]

Set-ItemProperty [-Name] String
[-Value] Object
[AddtlParams]

Set-ItemProperty [-Path] Strings
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-Exclude Strings] [-Filter String]
[-Force] [-Include Strings] [-PassThru]

In addition to the built-in cmdlets, providers can:

 Have custom cmdlets that are designed especially for related data.

 Add “dynamic parameters” to the built-in cmdlets that are available only
when using the cmdlet with the provider data.

 Managing Your Windows PowerShell Environment CHAPTER 3 71

The drive associated with each provider is listed in the default display of
 Get-PSProvider, but you can get more information about a provider drive by using
the Get-PSDrive cmdlet. For example, the Registry provider makes the HKEY_
LOCAL_MACHINE root key available as the HKLM drive. To find all the properties of
the HKLM drive, enter the following command:

get-psdrive hklm | format-list *

You can view and navigate through the data in a provider drive just as you would
data in a file system drive. To view the contents of a provider drive, use the Get-Item
or Get-ChildItem cmdlet. Type the drive name followed by a colon (:). For example,
to view the contents of the Function drive, type:

get-childitem function:

You can view and manage the data in any drive from another drive by including
the drive name in the path. For example, to view the HKLM\Software registry key in
the HKLM drive from another drive, type:

get-childitem hklm:\software

To get into the drive, use the Set-Location cmdlet. Remember the colon when
specifying the drive path. For example, to change your location to the root of the
Function drive, type set-location function:. Then, to view the contents of the
 Function drive, type get-childitem.

You can navigate through a provider drive just as you would a hard drive. If the
data is arranged in a hierarchy of items within items, use a backslash (\) to indicate a
child item. The basic syntax is:

Set-location drive:\location\child-location\...

For example, to change your location to the HKLM\Software registry key, use a
Set-Location command, such as:

set-location hklm:\software

You can also use relative references to locations. A dot (.) represents the current
location. For example, if you are in the C:\Windows\System32 directory and you
want to list its files and folders, you can use the following command:

get-childitem .\

When PowerShell loads providers, the providers can add dynamic parameters
that are available only when the cmdlet is used with that provider. For example,
the Certificate drive adds the –CodeSigningCert parameter to the Get-Item and
Get-ChildItem cmdlets. You can use this parameter only when you use Get-Item or
Get-ChildItem in the Cert drive.

Although you cannot uninstall a provider, you can remove the Windows Power-
Shell snap-in for the provider from the current session. To remove a provider, use
the Remove-PSSnapin cmdlet. This cmdlet does not unload or uninstall providers. It

CHAPTER 3 Managing Your Windows PowerShell Environment72

removes all the contents of the snap-in, including providers and cmdlets. This makes
the related providers and cmdlets unavailable in the current session.

Another way to remove features made available based on snap-ins is to use the
Remove-PSDrive cmdlet to remove a particular drive from the current session. When
you remove a drive, the data on the drive is not affected, but the drive is no longer
available in the current session.

Often, you’ll want to ensure that a particular PowerShell provider or PSDrive is
available before you try to work with its features. The easiest way to do this is to
attempt to perform the action or run a script only if the provider or PSDrive is avail-
able. Consider the following example:

iIf (get-psprovider -psprovider wsman -erroraction silentlycontinue)
 {

 Code to execute if the provider is available.

} else {

 Code to execute if the provider is not available.

}

Here, when the WSMan provider is available, the statement in parentheses
evaluates to True, and any code in the related script block is executed. When the
WSMan provider is not available, the statement in parentheses evaluates to False,
and any code in the Else statement is executed. Note also that I set the –ErrorAction
parameter to SilentlyContinue so that error messages aren’t written to the output if
the provider is not found.

Navigating and Using Provider Drives

When you are using provider drives, you might also want to manage content,
confi gure locations, and work with paths. Table 3-5 provides an overview of cmdlets
that you can use to perform related tasks.

iIf (get-psprovider -psprovider wsman -erroraction silentlycontinue)
 {

Code to execute if the provider is available.

} else {

Code to execute if the provider is not available.

}

 Managing Your Windows PowerShell Environment CHAPTER 3 73

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET DESCRIPTION

Add-Content Adds content to the specified item, such as adding words to a
file.

Add-Content [[-LiteralPath] |
[-Path]] Strings
[-Value] Objects [AddtlParams]

AddtlParams=
[-Credential Credential] [-Encoding
{<Unknown> | String | <Unicode> | <Byte>
| <BigEndianUnicode> | <UTF8> | <UTF7>
| <Ascii>}] [-Exclude Strings] [-Filter
String] [-Force] [-Include Strings]
[-PassThru]

Clear-Content Deletes the contents of an item, such as deleting the text from a
file, but does not delete the item.

Clear-Content [[-LiteralPath] |
[-Path]] Strings [AddtlParams]

AddtlParams=
[-Credential Credential] [-Exclude
Strings] [-Filter String] [-Force]
[-Include Strings]

Get-Content Gets the content of the item at the specified location.

Get-Content [[-LiteralPath] | [-Path]]
Strings [AddtlParams]

AddtlParams=
[-Credential Credential] [-Delimiter
String] [-Encoding {<Unknown> | String |
<Unicode> | <Byte> | <BigEndianUnicode>
| <UTF8> | <UTF7> | <Ascii>}] [-Exclude
Strings] [-Filter String] [-Force]
[-Include Strings] [-ReadCount <Int64>]
[-TotalCount <Int64>] [-Wait]

 CHAPTER 3 Managing Your Windows PowerShell Environment74

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET DESCRIPTION

Set-Content Writes content to an item or replaces the content in an item
with new content.

Set-Content [[-LiteralPath] |
[-Path]] Strings
[-Value] Objects [AddtlParams]

AddtlParams=
[-Credential Credential] [-Encoding
{<Unknown> | String | <Unicode> | <Byte>
| <BigEndianUnicode> | <UTF8> | <UTF7> |
<Ascii>}] [-Exclude Strings]
[-Filter String] [-Force]
[-Include Strings] [-PassThru]

Get-Location Gets information about the current working location.

Get-Location [-PSDrive Strings]
[-PSProvider Strings]

Get-Location [-Stack]
[-StackName Strings]

Set-Location Sets the current working location to a specified location.

Set-Location [-PassThru]
[[-Path] String]

Set-Location [-PassThru]
[-StackName String]

Push-Location Adds the current location to the top of a list of locations.
(“stack”).

Push-Location [-PassThru]
[-StackName String]
[[-LiteralPath] | [-Path] String]

Pop-Location Changes the current location to the location most recently
pushed onto the stack.

Pop-Location [-PassThru]
[-StackName String]

Join-Path Combines a path and a child-path into a single path. The pro-
vider supplies the path delimiters.

Join-Path [-Credential Credential]
[-Resolve] [-Path] Strings
[-ChildPath] String

 Managing Your Windows PowerShell Environment CHAPTER 3 75

TABLE 3-5 Cmdlets for Working with Provider Drives

CMDLET DESCRIPTION

Convert-Path Converts a path from a Windows PowerShell path to a Windows
PowerShell provider path.

Convert-Path [[-LiteralPath] |
[-Path]] Strings

Split-Path Returns the specified part of a path.

Split-Path [-LiteralPath Strings]
[-Path] Strings
[AddtlParams]

AddtlParams=
[-Credential Credential]
[-IsAbsolute | -Leaf | -Parent |
-NoQualifier | -Qualifier] [-Resolve]

Test-Path Determines whether all elements of a path exist.

Test-Path [[-LiteralPath] |
[-Path]] Strings
[AddtlParams]

AddtlParams=
[-Credential Credential] [-Exclude
Strings] [-Filter String] [-Include
Strings] [-IsValid] [-PathType {<Any> |
<Container> | <Leaf>}]

Resolve-Path Resolves the wildcard characters in a path and displays the
path’s contents.

Resolve-Path [-Credential Credential]
[[-LiteralPath] | [-Path] Strings]

The currently selected provider drive determines what data store you are work-
ing with. The default data store is the file system, and the default path within the file
system is the profile directory for the currently logged-on user (in most cases).

The current working location is the location that Windows PowerShell uses if you
do not supply an explicit path to the item or location that is affected by the com-
mand. Typically, this is a directory on a hard drive accessed through the FileSystem
provider. All commands are processed from this working location unless another
path is explicitly provided.

PowerShell keeps track of the current working location for each drive even when
the drive is not the current drive. This allows you to access items from the current
working location by referring only to the drive of another location. For example,

 CHAPTER 3 Managing Your Windows PowerShell Environment76

suppose that your current working location is C:\Scripts\PowerShell. Then you use
the following command to change your current working location to the HKLM drive:

Set-Location HKLM:

Although your current location is now the HKLM drive, you can still access items
in the C:\Scripts\PowerShell directory by using the C drive, as shown in the following
example:

Get-ChildItem C:

PowerShell retains the information that your current working location for the C
drive is the C:\Scripts\PowerShell directory, so it retrieves items from that directory.
The results would be the same if you ran the following command:

Get-ChildItem C:\Scripts\PowerShell

You can use the Get-Location command to determine the current working loca-
tion, and you can use the Set-Location command to set the current working loca-
tion. For example, the following command sets the current working location to the
Scripts directory of the C drive:

Set-Location c:\scripts

After you set the current working location, you can still access items from other
drives simply by including the drive name (followed by a colon) in the command, as
shown in the following example:

Get-ChildItem HKLM:\software

This example retrieves a list of items in the Software container of the HKEY Local
Machine hive in the registry.

You use special characters to represent the current working location and its
parent location. To represent the current working location, you use a single period.
To represent the parent of the current working location, you use two periods. For
example, the following command specifies the PowerShell subdirectory in the cur-
rent working location:

Get-ChildItem .\PowerShell

If the current working location is C:\Scripts, this command returns a list of all the
items in C:\Scripts\PowerShell. However, if you use two periods, the parent directory
of the current working location is used, as shown in the following example:

Get-ChildItem ..\Data

In this case, PowerShell treats the two periods as the C drive, so the command
retrieves all the items in the C:\Data directory.

A path beginning with a slash identifies a path from the root of the current drive.
For example, if your current working location is C:\Scripts\PowerShell, the root

 Managing Your Windows PowerShell Environment CHAPTER 3 77

of your drive is C. Therefore, the following command lists all items in the C:\Data
 directory:

Get-ChildItem \Data

 If you do not specify a path beginning with a drive name, slash, or period when
supplying the name of a container or item, the container or item is assumed to
be located in the current working location. For example, if your current working
location is C:\Scripts, the following command returns all the items in the C:\Scripts\
PowerShell directory:

Get-ChildItem PowerShell

 If you specify a fi le name rather than a directory name, PowerShell returns de-
tails about that fi le, as long as the fi le is available in the current working location. If
the fi le is not available, PowerShell returns an error.

Using Modules

 Windows PowerShell modules are self-contained, reusable units of execution that
can include:

 Script functions that are made available through .PSM1 fi les.

 .NET assemblies that are compiled into .DLL fi les and made available through
.PSD1 fi les.

 PowerShell snap-ins that are made available in .DLL fi les.

 Custom views and data types that are described in .PS1XML fi les.

 Most modules have related snap-ins, .NET assemblies, custom views, and custom
data types. In the .PSD1 fi les that defi ne the included assemblies, you’ll fi nd an as-
sociative array that defi nes the properties of the module, as is shown in the example
that follows and summarized in Table 3-6.

@{
GUID="{8FA5064B-8479-4c5c-86EA-0D311FE48875}"
Author="Microsoft Corporation"
CompanyName="Microsoft Corporation"
Copyright="© Microsoft Corporation. All rights reserved."
ModuleVersion="1.0.0.0"
Description="Powershell File Transfer Module"
PowerShellVersion="2.0"
CLRVersion="2.0"
NestedModules="Microsoft.BackgroundIntelligentTransfer.Management"
FormatsToProcess="FileTransfer.Format.ps1xml"
RequiredAssemblies=Join-Path $psScriptRoot "Microsoft.
BackgroundIntelligentTransfer.Management.Interop.dll"
}

@{
GUID="{8FA5064B-8479-4c5c-86EA-0D311FE48875}"
Author="Microsoft Corporation"
CompanyName="Microsoft Corporation"
Copyright="© Microsoft Corporation. All rights reserved."
ModuleVersion="1.0.0.0"
Description="Powershell File Transfer Module"
PowerShellVersion="2.0"
CLRVersion="2.0"
NestedModules="Microsoft.BackgroundIntelligentTransfer.Management"
FormatsToProcess="FileTransfer.Format.ps1xml"
RequiredAssemblies=Join-Path $psScriptRoot "Microsoft.
BackgroundIntelligentTransfer.Management.Interop.dll"
}

 CHAPTER 3 Managing Your Windows PowerShell Environment78

TABLE 3-6 Common Properties of Modules

PROPERTY DESCRIPTION

Author, CompanyName, Copyright Provides information about the creator of
the module and copyright.

CLRVersion The common language runtime (CLR)
 version of the .NET Framework required
by the module.

Description The descriptive name of the module.

FormatsToProcess A list of FORMAT.PS1XML files loaded by
the module to create custom views for
the module’s cmdlets.

GUID The globally unique identifier (GUID) of
the module.

ModuleVersion The version and revision number of the
module.

NestedModules A list of snap-ins, .NET assemblies, or both
loaded by the module.

PowerShellVersion The version of PowerShell required by the
module. The version specified or a later
version must be installed for the module
to work.

RequiredAssemblies A list of .NET assemblies that must be
loaded for the module to work.

TypesToProcess A list of TYPES.PS1XML files loaded by the
module to create custom data types for
the module’s cmdlets.

Although PowerShell includes a New-Module cmdlet for creating modules, you’ll
more commonly use Get-Module, Import-Module, and Remove-Module to work
with existing modules. You can list the available modules by entering get-module

-listavailable. However, this will give you the full definition of each module in list
format. A better way to find available modules is to look for them by name, path,
and description:

get-module -listavailable | format-list name, path, description

You can also look for them only by name and description:

get-module -listavailable | format-table name, description

 Managing Your Windows PowerShell Environment CHAPTER 3 79

If you want to determine the availability of a specific module, enter the following
command:

get-module -listavailable [-name] ModuleNames

where ModuleNames is a comma-separated list of modules to check. You can enter
module names with or without the associated file extension and use wildcards such
as. Note that when you use the –ListAvailable parameter, the –Name parameter is
position sensitive, allowing you to specify modules using either

get-module –listavailable –name ModuleNames

or

get-module –listavailable ModuleNames

Here is an example:

get-module –listavailable –name networkloadbalancingclusters

The core set of modules available in PowerShell depends on the versions of
Windows you are running as well as the components that are installed. Table 3-7
lists some of the most common modules as well as the operating systems they are
commonly found on by default.

TABLE 3-7 Common PowerShell Modules

NAME DESCRIPTION

OPERATING

 SYSTEM

ActiveDirectory Provides a comprehensive set of
cmdlets for working with Active
Directory Domain Services (AD DS).

Windows Server
2008 Release 2
or later

ADRMS Provides cmdlets for updating,
installing, and uninstalling Active
Directory Rights Management
Services (AD RMS), including
Update-ADRMS, Uninstall-ADRMS,
Install-ADRMS.

Windows Server
2008 Release 2
or later

BestPractices Provides cmdlets for testing
best-practices scenarios, including
Get-BPAModel, Invoke-BPAModel,
Get-BPAResult, Set-BPAResult.

Windows Server
2008 Release 2
or later

FailoverClusters Provides a comprehensive set of
cmdlets for working with Microsoft
Cluster Service.

Windows Server
2008 Release 2
or later

 CHAPTER 3 Managing Your Windows PowerShell Environment80

TABLE 3-7 Common PowerShell Modules

NAME DESCRIPTION

OPERATING

 SYSTEM

FileTransfer Provides cmdlets for working with
Background Intelligent Transfer
Service, including Add-FileTransfer,
Clear-FileTransfer, Complete-
FileTransfer, Get-FileTransfer, New-
FileTransfer, Resume-FileTransfer
Set-FileTransfer, Suspend-FileTransfer.

Windows Vista
or later

GroupPolicy Provides a comprehensive set of
cmdlets for working with Group
Policy objects (GPOs).

Windows Server
2008 Release 2
or later

NetworkLoadBalancing-
Clusters

Provides a comprehensive set of
cmdlets for working with Network
Load Balancing (NLB) clusters.

Windows Server
2008 Release 2
or later

PSDiagnostics Provides functions for performing
event traces, including Disable-
PSTrace, Disable-PSWSMan-
CombinedTrace, Disable-
WSManTrace, Enable-PSTrace,
Enable-PSWSManCombinedTrace,
Enable-WSManTrace, Get-
LogProperties, Set-LogProperties,
Start-Trace, Stop-Trace.

Windows Vista or
later

RemoteDesktopServices Provides cmdlets for working
with Terminal Services running in
 Remote Desktop mode.

Windows Server
2008 Release 2
or later

ServerManager Provides cmdlets for listing, adding,
and removing Windows features,
including Get-WindowsFeature,
Add-WindowsFeature, Remove-
WindowsFeature.

Windows Server
2008 Release 2
or later

TroubleshootingPack Provides cmdlets for getting infor-
mation about and running trouble-
shooting packs you’ve installed,
including Get-TroubleshootingPack
and Invoke-TroubleshootingPack.

Windows 7 or
later

WebAdministration Provides a comprehensive set of
cmdlets for working with Internet
Information Services (IIS).

Windows Server
2008 Release 2
or later

 Managing Your Windows PowerShell Environment CHAPTER 3 81

 The components for available modules are registered in the operating system
as necessary but are not added to your PowerShell sessions by default (in most
instances). Therefore, to use functions, cmdlets, or other features of a module, you
must fi rst import the module. Modules such as PSDiagnostics that defi ne functions
and include .PSM1 fi les require an execution policy to be set so that signed scripts
can run.

 You can import an available module into the current session by using the
Import-Module cmdlet. For example, to import the WebAdminstration module,
type import-module webadministration. After you import a module, its provid-
ers, cmdlets, and other features are available in the console session.

 If you add the necessary Import-Module commands to a relevant profi le, you
can be sure that modules you want to use are always loaded. To fi nd imported
modules or to verify that an additional module is imported, enter the following
command:

get-module | format-table name, description

 Any module listed in the output is imported and available.

 To remove a module from the current session, use the Remove-Module cmdlet.
For example, to remove the WebAdministration module from the current session,
type remove-module webadministration. The module is still loaded, but the pro-
viders, cmdlets, and other features that it supports are no longer available.

 You will often want to be sure that a particular module has been imported before
you try to use its features. In the following example, when the WebAdministration
module is available, the statement in parentheses evaluates to True, and any code in
the related script block is executed:

if (get-module -name WebAdministration -erroraction silentlycontinue)
 {

 Code to execute if the provider is available.

} else {

 Code to execute if the provider is not available.

}

 As shown previously, you could add an Else clause to defi ne alternative actions.
As before, I set the –ErrorAction parameter to SilentlyContinue so that error mes-
sages aren’t written to the output if the module has not been imported.

if (get-module -name WebAdministration -erroraction silentlycontinue)
{

 Code to execute if the provider is available.

} else {

 Code to execute if the provider is not available.

}

CHAPTER 3 Managing Your Windows PowerShell Environment82

REAL WORLD Although checking for modules is helpful, you’ll want to consider the

case of SQL Server separately. The SQL Server PowerShell console loads an extended

environment designed specifi cally for working with SQL Server. You can re-create this

environment using a lengthy script that loads all the right extensions. However, it usu-

ally is much easier to simply start the SQL Server PowerShell console when you want to

manage SQL Server using PowerShell.

Generally, if the $sqlpsreg variable exists and has child items, the user is running the

SQL Server PowerShell console. Knowing this, you can determine whether this console

is available as shown in the following example:

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
{ throw "SQL Server PowerShell is not installed."
} else {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
}

Here, you determine whether the $sqlpsreg variable exists and has child items. If the

variable doesn’t exist, PowerShell throws an error. If the variable exists, you get the

properties of the related object and then use the Path property to specify the path to

use with SQL Server.

PowerShell Extensions for Exchange Server and SQL Server

PowerShell extensions are available for Exchange Server 2007 with Service Pack 1 or
later and SQL Server 2008. The extensions for Exchange Server 2007 SP1 or later are
implemented in a custom console called the Exchange Management Console. The
extensions for SQL Server 2008 are implemented in a minishell called the SQL Server
PowerShell console.

Custom consoles and minishells and modules are two different approaches for
creating prepackaged PowerShell environments. A custom console automatically
loads the snap-ins required to preconfi gure the working environment, but it does
not save the entire state. A minishell gives you a complete working environment
with the entire state preserved, including any snap-ins, providers, and type exten-
sions loaded previously. However, minishells are closed environments with their own
security settings. Because of this, you cannot extend minishell environments and
must manage security settings separately from the security settings in PowerShell.

TIP The PowerShell Software Developer’s Kit allows developers to create minishells

using make-shell. In PowerShell Version 1.0, custom consoles and minishells were the

only way to create prepackaged PowerShell environments. As discussed previously,

PowerShell V2 adds modules that extend the working environment using .NET assem-

blies and script functions. Because modules are more versatile and can be easily added

to any console, Microsoft likely will use modules to implement PowerShell functional-

ity for Exchange Server and SQL Server (and may have already done so by the time you

read this).

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
{ throw "SQL Server PowerShell is not installed."
} else {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
}

 Managing Your Windows PowerShell Environment CHAPTER 3 83

 When you are working on a server running Exchange Server 2007 SP1 or later,
you can access Exchange cmdlets at the PowerShell prompt or in a script by loading
the custom console for Exchange. To load the console for Exchange Server 2007,
enter the following command:

powershell.exe –noexit -psconsolefile "C:\Program Files\Microsoft\Exchange
Server\Bin\exshell.psc1"

 With scheduled tasks, don’t forget that you must load the custom console for
Exchange as shown in the following example:

at 05:30 /interactive powershell.exe –noexit -psconsolefile "C:\Program
Files\Microsoft\Exchange Server\Bin\exshell.psc1" -command "Move-Mailbox
–identity <wrstanek@cpandl.com> -TargetDatabase EngMailboxDB"

 NOTE Both of the preceding examples are a single line. If you installed Exchange

Server 2007 in a different location, modify the path so that it points to the Exchange

Server bin directory on your server.

 When you are working on a server running SQL Server 2008, you can access
SQL Server cmdlets at the PowerShell prompt or in a script by running the SQL
Server PowerShell console or by loading the required startup environment from a
script. The executable for the SQL Server PowerShell console is SQLPS.exe, and the
required path to use the executable is confi gured automatically when you install
SQL Server. To start the SQL Server PowerShell console, enter sqlps at a command
prompt or PowerShell prompt. To load the SQL Server environment from a script,
the script must add the SQL Server snap-ins, set certain global variables, and then
load the SQL Server management objects. A sample initialization script follows.

#
Add the SQL Server PowerShell Provider, if available
$ErrorActionPreference = "Stop"
$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.
SqlServer.Management.PowerShell.sqlps"

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
{ throw "SQL Server PowerShell Provider is not installed."
} else {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
}

#
Set global variables
Set-Variable SqlServerMaximumChildItems 0 -scope Global
Set-Variable SqlServerConnectionTimeout 30 -scope Global
Set-Variable SqlServerIncludeSystemObjects $false -scope Global
Set-Variable SqlServerMaximumTabCompletion 1000 -scope Global

#
Add the SQL Server PowerShell Provider, if available
$ErrorActionPreference = "Stop"
$sqlpsreg="HKLM:\SOFTWARE\Microsoft\PowerShell\1\ShellIds\Microsoft.
SqlServer.Management.PowerShell.sqlps"

if (Get-ChildItem $sqlpsreg -ErrorAction "SilentlyContinue")
{ throw "SQL Server PowerShell Provider is not installed."
} else {
 $item = Get-ItemProperty $sqlpsreg
 $sqlpsPath = [System.IO.Path]::GetDirectoryName($item.Path)
}

#
Set global variables
Set-Variable SqlServerMaximumChildItems 0 -scope Global
Set-Variable SqlServerConnectionTimeout 30 -scope Global
Set-Variable SqlServerIncludeSystemObjects $false -scope Global
Set-Variable SqlServerMaximumTabCompletion 1000 -scope Global

CHAPTER 3 Managing Your Windows PowerShell Environment84

#
Load the SQL Server Management Objects
$assemblylist = "Microsoft.SqlServer.Smo",
"Microsoft.SqlServer.Dmf ",
"Microsoft.SqlServer.SqlWmiManagement ",
"Microsoft.SqlServer.ConnectionInfo ",
"Microsoft.SqlServer.SmoExtended ",
"Microsoft.SqlServer.Management.RegisteredServers ",
"Microsoft.SqlServer.Management.Sdk.Sfc ",
"Microsoft.SqlServer.SqlEnum ",
"Microsoft.SqlServer.RegSvrEnum ",
"Microsoft.SqlServer.WmiEnum ",
"Microsoft.SqlServer.ServiceBrokerEnum ",
"Microsoft.SqlServer.ConnectionInfoExtended ",
"Microsoft.SqlServer.Management.Collector ",
"Microsoft.SqlServer.Management.CollectorEnum"

foreach ($asm in $assemblylist)
{ $asm = [Reflection.Assembly]::LoadWithPartialName($asm) }

#
Load SQL Server snapins, type data and format data
Push-Location
cd $sqlpsPath
Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100
Update-TypeData -PrependPath SQLProvider.Types.ps1xml
update-FormatData -prependpath SQLProvider.Format.ps1xml
Pop-Location

Before you use this type of initialization script, you should check current
 documentation for the version and service pack of SQL Server you are running
to determine the required components. On the Microsoft Support site (at
support.microsoft.com), you’ll likely fi nd examples of initialization scripts for
your version and service pack.

#
Load the SQL Server Management Objects
$assemblylist = "Microsoft.SqlServer.Smo",
"Microsoft.SqlServer.Dmf ",
"Microsoft.SqlServer.SqlWmiManagement ",
"Microsoft.SqlServer.ConnectionInfo ",
"Microsoft.SqlServer.SmoExtended ",
"Microsoft.SqlServer.Management.RegisteredServers ",
"Microsoft.SqlServer.Management.Sdk.Sfc ",
"Microsoft.SqlServer.SqlEnum ",
"Microsoft.SqlServer.RegSvrEnum ",
"Microsoft.SqlServer.WmiEnum ",
"Microsoft.SqlServer.ServiceBrokerEnum ",
"Microsoft.SqlServer.ConnectionInfoExtended ",
"Microsoft.SqlServer.Management.Collector ",
"Microsoft.SqlServer.Management.CollectorEnum"

foreach ($asm in $assemblylist)
{ $asm = [Reflection.Assembly]::LoadWithPartialName($asm) }

#
Load SQL Server snapins, type data and format data
Push-Location
cd $sqlpsPath
Add-PSSnapin SqlServerCmdletSnapin100
Add-PSSnapin SqlServerProviderSnapin100
Update-TypeData -PrependPath SQLProvider.Types.ps1xml
update-FormatData -prependpath SQLProvider.Format.ps1xml
Pop-Location

85

CHAP TER 4

Using Sessions, Jobs,
and Remoting

Enabling Remote Commands 85

Executing Remote Commands 87

Establishing Remote Sessions 94

Establishing Remote Background Jobs 97

Working Remotely Without WinRM 107

Windows PowerShell V2 supports remote execution of commands, remote
sessions, and remote background jobs. When you work remotely, you type

commands in Windows PowerShell on your computer but execute the commands
on one or more remote computers. To work remotely, your computer and the
remote computer must both have PowerShell V2, the Microsoft .NET Framework 2.0,
and Windows Remote Management 2.0.

Enabling Remote Commands

The Windows PowerShell remoting features are supported by the WS-Management
protocol and the Windows Remote Management (WinRM) service that implements
WS-Management in Windows. Computers running Windows 7 and later include
WinRM 2.0 or later. On computers running earlier versions of Windows, you need
to install WinRM 2.0 or later as appropriate and if supported. Currently, remoting
is supported only on Windows Vista with Service Pack 1 or later, Windows 7,
 Windows Server 2008, and Windows Server 2008 Release 2.

You can verify the availability of WinRM and configure a PowerShell for
 remoting by following these steps:

 1. Start Windows PowerShell as an administrator by right-clicking the
 Windows PowerShell shortcut and selecting Run As Administrator.

CHAPTER 4 Using Sessions, Jobs, and Remoting 86

 2. The WinRM service is confi gured for manual startup by default. You must
change the startup type to Automatic and start the service on each com-
puter you want to work with. At the PowerShell prompt, you can verify that
the WinRM service is running using the following command:

get-service winrm

 As shown in the following example, the value of the Status property in the
output should be Running:

Status Name DisplayName

------ ---- -----------

Running WinRM Windows Remote Management

 3. To confi gure Windows PowerShell for remoting, type the following
 command:

Enable-PSRemoting –force

 In many cases, you will be able to work with remote computers in other domains.
However, if the remote computer is not in a trusted domain, the remote computer
might not be able to authenticate your credentials. To enable authentication, you
need to add the remote computer to the list of trusted hosts for the local computer
in WinRM. To do so, type

winrm s winrm/config/client '@{TrustedHosts="RemoteComputer"}'

 where RemoteComputer is the name of the remote computer, such as

winrm s winrm/config/client '@{TrustedHosts="CorpServer56"}'

 When you are working with computers in workgroups or homegroups, you must
either use HTTPS as the transport or add the remote machine to the TrustedHosts
confi guration settings. If you cannot connect to a remote host, verify that the
service on the remote host is running and is accepting requests by running the fol-
lowing command on the remote host:

winrm quickconfig

 This command analyzes and confi gures the WinRM service. If the WinRM service
is set up correctly, you’ll see output similar to the following:

WinRM already is set up to receive requests on this machine.

WinRM already is set up for remote management on this machine.

 If the WinRM service is not set up correctly, you see output similar to the fol-
lowing and need to respond affi rmatively to several prompts. When this process
completes, WinRM should be set up correctly.

Status Name DisplayName

------ ---- -----------

Running WinRM Windows Remote Management

WinRM already is set up to receive requests on this machine.

WinRM already is set up for remote management on this machine.

 Using Sessions, Jobs, and Remoting CHAPTER 4 87

WinRM is not set up to receive requests on this machine.

The following changes must be made:

Set the WinRM service type to delayed auto start.

Start the WinRM service.

Configure LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

Make these changes [y/n]? y

WinRM has been updated to receive requests.

WinRM service type changed successfully.

WinRM service started.

Configured LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

WinRM is not set up to allow remote access to this machine for

management. The following changes must be made:

Create a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

Make these changes [y/n]? y

WinRM has been updated for remote management.

Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

 To use PowerShell remoting features, you must start Windows PowerShell as an
administrator by right-clicking the Windows PowerShell shortcut and selecting Run
As Administrator. When starting PowerShell from another program, such as the
command prompt (cmd.exe), you must start that program as an administrator.

Executing Remote Commands

 You can use Windows PowerShell remoting to run cmdlets and external programs
on remote computers. For example, you can run any built-in cmdlets and external
programs accessible in the PATH environment variable ($env:path). However,
because PowerShell runs as a network service or local service, you cannot use
 PowerShell to open the user interface for any program on a remote computer. If you
try to start a program with a graphical interface, the program process starts but the
command cannot complete, and the PowerShell prompt does not return until the
program is fi nished or you press Ctrl+C.

WinRM is not set up to receive requests on this machine.

The following changes must be made:

Set the WinRM service type to delayed auto start.

Start the WinRM service.

Configure LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

Make these changes [y/n]? y

WinRM has been updated to receive requests.

WinRM service type changed successfully.

WinRM service started.

Configured LocalAccountTokenFilterPolicy to grant administrative rights

remotely to local users.

WinRM is not set up to allow remote access to this machine for

management. The following changes must be made:

Create a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

Make these changes [y/n]? y

WinRM has been updated for remote management.

Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP

on this machine.

 CHAPTER 4 Using Sessions, Jobs, and Remoting 88

Understanding Remote Execution

When you submit a remote command, the command is transmitted across the net-
work to the Windows PowerShell client on the designated remote computers, and
it runs in the Windows PowerShell client on the remote computer. The command
results are sent back to the local computer and appear in the Windows PowerShell
session on the local computer. Note that all of the local input to a remote command
is collected before being sent to the remote computer, but the output is returned to
the local computer as it is generated.

Whenever you use PowerShell remoting features, keep the following in mind:

 You must start Windows PowerShell as an administrator by right-clicking
the Windows PowerShell shortcut and selecting Run As Administrator. When
starting PowerShell from another program, such as the command prompt
(cmd.exe), you must start that program as an administrator.

 The current user must be a member of the Administrators group on the
remote computer or be able to provide the credentials of an administrator.
When you connect to a remote computer, PowerShell uses your user name
and password credentials to log on to the remote computer. The credentials
are encrypted.

 When you work remotely, you use multiple instances of Windows PowerShell:
a local instance and one or more remote instances. Generally, in the local
instance, the policies and profiles on the local computer are in effect. On a
remote instance, the policies and profiles on the remote computer are in ef-
fect. This means cmdlets, aliases, functions, preferences, and other elements
in the local profile are not necessarily available to remote commands. To en-
sure you can use cmdlets, aliases, functions, preferences, and other elements
in the local profile with remote commands, you must copy the local profiles
to each remote computer.

 Although you can execute commands on remote computers, any files, direc-
tories, and additional resources that are needed to execute a command must
exist on the remote computer. Additionally, your user account must have
permission to connect to the remote computer, permission to run Windows
PowerShell, and permission to access files, directories, and other resources
on the remote computer.

Commands for Remoting

You can work with remote computers using the following remoting cmdlets:

 Invoke-Command Runs commands on a local computer or one or more re-
mote computers, and returns all output from the commands, including errors. To
run a single command on a remote computer, use the –ComputerName param-
eter. To run a series of related commands that share data, create a PowerShell
session (PSSession) on a remote computer, and then use the –Session parameter
of Invoke-Command to run the command in the PSSession.

 Using Sessions, Jobs, and Remoting CHAPTER 4 89

Invoke-Command [-ArgumentList Args] [-InputObject Object]
[-ScriptBlock] ScriptBlock

Invoke-Command [[-ComputerName] Computers] [-ApplicationName
String] [-FilePath] String [-Port PortNum] [-UseSSL]
[BasicParams] [SecurityParams]

Invoke-Command [[-Session] Sessions] [-FilePath] String
[BasicParams]

Invoke-Command [[-ConnectionURI] URIs] [-AllowRedirection]
[-FilePath] String [BasicParams] [SecurityParams]

Invoke-Command [[-Session] Sessions] [-ScriptBlock] ScriptBlock
[BasicParams]

Invoke-Command [[-ConnectionURI] URIs] [-AllowRedirection]
[-ScriptBlock] ScriptBlock [BasicParams] [SecurityParams]

BasicParams=

[-ArgumentList Args] [-AsJob] [-HideComputerName] [-InputObject
Object] [-JobName String] [-ThrottleLimit Limit]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |
<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-NoCompression]
[-SessionOption SessionOption]

 New-PSSession Creates a PowerShell session (PSSession) on a local or
remote computer. When you create a PSSession, Windows PowerShell estab-
lishes a persistent connection to the remote computer, and you can use the
PSSession to interact directly with the computer.

New-PSSession [[-Session] Sessions] [BasicParams]

New-PSSession [[-ComputerName] Computers] [-ApplicationName
Application] [-UseSSL] [BasicParams] [SecurityParams]

New-PSSession [-ConnectionURI] URIs [-AllowRedirection]
[BasicParams] [SecurityParams]

BasicParams=

[-Noprofile] [-ThrottleLimit Limit] [-TimeOut Num]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |

Invoke-Command [-ArgumentList Args] [-InputObject Object]
[-ScriptBlock] ScriptBlock

Invoke-Command [[-ComputerName] Computers] [-ApplicationName
String] [-FilePath] String [-Port g PortNum] [-UseSSL]
[BasicParams] [SecurityParams]

Invoke-Command [[-Session] Sessions] [-FilePath] String
[BasicParams]

Invoke-Command [[-ConnectionURI] URIs] [-AllowRedirection]
[-FilePath] String [BasicParams] [SecurityParams]g

Invoke-Command [[-Session] Sessions] [-ScriptBlock] ScriptBlock
[BasicParams]

Invoke-Command [[-ConnectionURI] URIs] [-AllowRedirection]
[-ScriptBlock] ScriptBlock [BasicParams] [SecurityParams]k

BasicParams=

[-ArgumentList Args] [-AsJob] [-HideComputerName] [-InputObject
Object] [-JobName String] [-ThrottleLimit Limit]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |
<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-NoCompression]
[-SessionOption SessionOption]

New-PSSession [[-Session] Sessions] [BasicParams]

New-PSSession [[-ComputerName] Computers] [-ApplicationName
Application] [-UseSSL] [BasicParams] [SecurityParams]

New-PSSession [-ConnectionURI] URIs [-AllowRedirection]
[BasicParams] [SecurityParams]

BasicParams=

[-Noprofile] [-ThrottleLimit Limit] [-TimeOut Num]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |

CHAPTER 4 Using Sessions, Jobs, and Remoting 90

<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-Name Names] [-NoCompression]
[-Port PortNum] [-SessionOption SessionOption]

 Get-PSSession Gets the PowerShell sessions (PSSessions) that were cre-
ated in the current session. Without parameters, this cmdlet returns all of
the PSSessions created in the current session. You can use the parameters of
Get-PSSession to get the sessions that are connected to particular computers
or identify sessions by their names, IDs, or instance IDs. For computers, type
the NetBIOS name, IP address, or fully qualifi ed domain name. To specify the
local computer, type the computer name, localhost, or a dot (.). For IDs, type
an integer value that uniquely identifi es the PSSession in the current session.
PSSessions can be assigned friendly names with the –Name parameter. You
can specify the friendly names using wildcards. To fi nd the names and IDs of
PSSessions, use Get-PSSession without parameters. An instance ID is a GUID
that uniquely identifi es a PSSession, even when you have multiple sessions
running in PowerShell. The instance ID is stored in the RemoteRunspaceID
property of the RemoteRunspaceInfo object that represents a PSSession. To
fi nd the InstanceID of the PSSessions in the current session, type get-pssession

| Format-Table Name, ComputerName, RemoteRunspaceId.

Get-PSSession [[-ComputerName] Computers] | [-InstanceID GUIDs] |
[-Name Names] | [-ID IDs]

 Enter-PSSession Starts an interactive session with a single remote com-
puter. During the session, you can run commands just as if you were typing
directly on the remote computer. You can have only one interactive session
at a time. Typically, you use the –ComputerName parameter to specify the
name of the remote computer. However, you can also use a session that you
created previously by using New-PSSession for the interactive session.

Enter-PSSession [[-Session] Session] | [-InstanceID GUID] |
[-Name Name] | [-ID ID]

Enter-PSSession [-ComputerName] Computer [-ApplicationName String]
[-UseSSL] [SecurityParams]

Enter-PSSession [[-ConnectionURI] URI][-AllowRedirection]
[SecurityParams]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |
<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-NoCompression]
[-SessionOption SessionOption]

<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-Name Names] [-NoCompression]
[-Port PortNum] [-SessionOption SessionOption]

Get-PSSession [[-ComputerName] Computers] | [-InstanceID GUIDs] |
[-Name Names] | [-ID IDs]

Enter-PSSession [[-Session] Session] | [-InstanceID GUID] |
[-Name Name] | [-ID ID]

Enter-PSSession [-ComputerName] Computer [-ApplicationName r String]
[-UseSSL] [SecurityParams]

Enter-PSSession [[-ConnectionURI] URI][-AllowRedirection]
[SecurityParams]

SecurityParams=

[-Authentication {<Default> | <Basic> | <Negotiate> |
<NegotiateWithImplicitCredential> | <Credssp>}]
[-CertificateThumbprint String] [-ConfigurationName String]
[-Credential Credential] [-NoCompression]
[-SessionOption SessionOption]

 Using Sessions, Jobs, and Remoting CHAPTER 4 91

 Exit-PSSession Ends an interactive session and disconnects from the
remote computer. You can also type exit to end an interactive session. The
effect is the same as using Exit-PSSession.

Exit-PSSession

 Import-PSSession Imports cmdlets, aliases, functions, and other com-
mand types from an open session on a local or remote computer into the
current session. You can import any command that Get-Command can fi nd
in the other session. To import commands, fi rst use New-PSSession to con-
nect to the session from which you will import. Then use Import-PSSession
to import commands. By default, Import-PSSession imports all commands
except for commands that exist in the current session. To overwrite a com-
mand, specify the command in the –CommandName parameter. PowerShell
adds the imported commands to a temporary module that exists only in
your session, and it returns an object that represents the module. Although
you can use imported commands just as you would use any command in the
session, the imported part of the command actually runs in the session from
which it was imported. Because imported commands might take longer to
run than local commands, Import-PSSession adds an –AsJob parameter to
every imported command. This parameter allows you to run the command
as a PowerShell background job.

Import-PSSession [-CommandType {Alias | Function | Filter | Cmdlet
| ExternalScript | Application | Script | All}]
[-FormatTypeName Types] [-PSSnapin Snapins] [[-CommandName]
Commands] [[-ArgumentList] Args] [-Session] Session

 Export-PSSession Gets cmdlets, functions, aliases, and other command
types from an open session on a local or remote computer, and saves them
in a Windows PowerShell script module fi le (.psm1). When you want to use
the commands from the script module, use the Add-Module cmdlet to
add the commands to the local session so that they can be used. To export
commands, fi rst use New-PSSession to connect to the session that has the
commands that you want to export. Then use Export-PSSession to export
the commands. By default, Export-PSSession exports all commands except
for commands that already exist in the session. However, you can use the
–PSSnapin, –CommandName, and –CommandType parameters to specify
the commands to export.

Export-PSSession [-CommandType {Alias | Function | Filter | Cmdlet
| ExternalScript | Application | Script | All}]
[-Encoding String] [-Force] [-NoClobber] [-PSSnapin Snapins]
[[-CommandName] Commands] [[-ArgumentList] Args] [-Session] Session

Exit-PSSession

Import-PSSession [-CommandType {Alias | Function | Filter | Cmdlet
| ExternalScript | Application | Script | All}]
[-FormatTypeName Types] [-PSSnapin Snapins] [[-CommandName]
Commands] [[-ArgumentList] Args] [-Session] Session

Export-PSSession [-CommandType {Alias | Function | Filter | Cmdlet
| ExternalScript | Application | Script | All}]
[-Encoding String] [-Force] [-NoClobber] [-PSSnapin Snapins]
[[-CommandName] Commands] [[-ArgumentList] Args] [-Session] Session

CHAPTER 4 Using Sessions, Jobs, and Remoting 92

Invoking Remote Commands

One way to run commands on remote computers is to use the Invoke-Command
cmdlet. With this cmdlet, you can do the following:

 Use the –ComputerName parameter to specify the remote computers to
work with by DNS name, NetBIOS name, or IP address.

 When working with multiple remote computers, separate each computer
name or IP address with a comma.

 Enclose your command or commands to execute in curly braces, which
denotes a script block, and use the –ScriptBlock parameter to specify the
command or commands to run.

After completing any of the preceding actions, you can type the following com-
mand as a single line to run a Get-Process command remotely:

invoke-command -computername Server43, Server27, Server82
-scriptblock {get-process}

 TIP By default, Invoke-Command runs under your user name and credentials. Use

the –Credential parameter to specify alternate credentials, such as UserName or

 Domain\UserName. You will be prompted for a password.

 REAL WORLD When you connect to a remote computer that is running Windows

Vista, Windows Server 2003, or later versions of either one, the default starting loca-

tion is the home directory of the current user, which is stored in the %HomePath%

environment variable ($env:homepath) and the Windows PowerShell $home variable.

When you connect to a remote computer that is running Windows XP, the default

starting location is the home directory of the default user, which is stored in the

%HomePath% environment variable ($env:homepath) for the default user.

 When you use Invoke-Command, the cmdlet returns an object that includes
the name of the computer that generated the data. The remote computer name is
stored in the PSComputerName property. Typically, the PSComputerName property
is displayed by default. You can use the –HideComputerName parameter to hide the
PSComputerName property.

 If the PSComputerName property isn’t displayed and you want to see the source
computer name, use the Format-Table cmdlet to add the PSComputerName prop-
erty to the output as shown in the following example:

$procs = invoke-command -script {get-process |
sort-object -property Name} -computername Server56, Server42, Server27

&$procs | format-table Name, Handles, WS, CPU, PSComputerName –auto

invoke-command -computername Server43, Server27, Server82
-scriptblock {get-process}

$procs = invoke-command -script {get-process |
sort-object -property Name} -computername Server56, Server42, Server27

&$procs | format-table Name, Handles, WS, CPU, PSComputerName –auto

 Using Sessions, Jobs, and Remoting CHAPTER 4 93

Name Handles WS CPU PSComputerName

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

 . . .

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

csrss 528 20463755 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

 PowerShell includes a per-command throttling feature that lets you limit the
number of concurrent remote connections that are established for a command. The
default is 32 or 50 concurrent connections, depending on the cmdlet. You can use
the –ThrottleLimit parameter to set a custom throttle limit for a command. Keep in
mind the throttling feature is applied to each command, not to the entire session or
to the computer. If you are running a command concurrently in several sessions, the
number of concurrent connections is the sum of the concurrent connections in all
sessions.

 Keep in mind that although PowerShell can manage hundreds of concurrent
remote connections, the number of remote commands that you can send might be
limited by the resources of your computer and its ability to establish and maintain
multiple network connections. To add more protection for remoting, you can use
the –UseSSL parameter of Invoke-Command. This option uses an HTTPS channel
over Port 443 instead of HTTP over Port 80. As with commands that are run locally,
you can pause or terminate a remote command by pressing Ctrl+S or Ctrl+C.

 REAL WORLD PowerShell remoting is available even when the local computer is

not in a domain. For testing and development, you can use the remoting features to

connect to and create sessions on the same computer. PowerShell remoting works the

same as when you are connecting to a remote computer.

 To run remote commands on a computer in a workgroup, you might need to change

Windows settings on the computer. In Windows XP with Service Pack 2 (SP2), use Local

Security Settings (secpol.msc) to change the setting of the Network Access: Sharing

And Security Model For Local Accounts policy in Security Settings\Local Policies\

Security Options to Classic. In Windows Vista, create the LocalAccountTokenFilterPolicy

registry entry in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\

System and set its value to 1.

Name Handles WS CPU PSComputerName

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

. . .

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

csrss 528 20463755 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

CHAPTER 4 Using Sessions, Jobs, and Remoting 94

In Windows 2003, no changes are needed in most cases because the default setting of

the Network Access: Sharing And Security Model For Local Accounts policy is Classic.

However, you should check the setting to be sure it wasn’t changed.

Establishing Remote Sessions

Windows PowerShell 2.0 supports both local and remote sessions. A session is a
runspace that establishes a common working environment for commands. Com-
mands in a session can share data. Although you’ll learn more about sessions in
upcoming chapters, let’s look now at how remote sessions are used.

Invoking Sessions

You can establish a local or remote session to create a persistent connection using
the New-PSSession cmdlet. Unless you use the –ComputerName parameter and use
it to specify the name of one or more remote computers, PowerShell assumes you
are creating a session for the local computer. With New-PSSession, you must use the
–Session parameter with Invoke-Command to run the command in the named ses-
sion. For example, you can establish a session by typing the following command:

$s = new-PSSession –computername Server24

Here, $s is a variable that sets the name of the session. Because you’ve used the
–ComputerName parameter, PowerShell knows you are creating a remote session
rather than a local session. PowerShell creates a persistent connection with the
specifi ed computer. You can then use Invoke-Command with the –Session param-
eter to run the command in the named session as shown in this example:

invoke-command –session $s -scriptblock {get-process}

Here, you use Invoke-Command to run Get-Process in the $s session. Because
this session is connected to a remote computer, the command runs on the remote
computer.

You can just as easily establish a session with multiple computers. Simply es-
tablish the session and name all the computers. Generally, you might also need to
specify your credentials using the –Credential parameter.

 The –Credential parameter specifi es a user account that has permission to
perform an action. The default user account is the current user. You can provide
alternative credentials in one of two ways. You can:

 Pass in a Credential object to provide the information required for au-
thentication. A Credential object has UserName and Password properties.
Although the user name is stored as a regular string, the password is stored
as a secure, encrypted string. You can learn more about Credential objects

$s = new-PSSession –computername Server24

invoke-command –session $s -scriptblock {get-process}

 Using Sessions, Jobs, and Remoting CHAPTER 4 95

in “Specifying Authentication Credentials” in Chapter 9, “Inventorying and
Evaluating Windows Systems.”

 Specify the user account that has permission to perform the action. Enter
the user name as Domain\UserName or simply as UserName. If you specify
a user name, PowerShell displays a prompt for the user’s password. When
prompted, enter the password and then click OK.

 To see how the –Credential parameter can be used, consider the following
example:

$t = new-PSSession –computername Server24, Server45, Server36
–Credential Cpandl\WilliamS

 Here, you establish a session with Server24, Server45, and Server36 and specify
your domain and user name. As a result, when you use Invoke-Command to run
commands in the $t session, the commands run on each remote computer with
those credentials. Note that although this is a single session, each runspace on each
computer is separate.

 Extending this idea, you can also just as easily get the list of remote computers from
a text fi le. In this example, servers.txt contains a comma-separated list of computers:

$ses = get-content c:\test\servers.txt | new-PSSession
–Credential Cpandl\WilliamS

 Here, the contents of this fi le are piped to New-PSSession. As a result, the $ses
session is established with all computers listed in the fi le.

Sometimes, you’ll want to execute an application or external utility on a remote
computer as shown in the following example:

$comp = get-content c:\computers.txt
$s = new-pssession -computername $comp
invoke-command -session $s { powercfg.exe –energy }

Here, C:\Computers.txt is the path to the fi le containing the list of remote com-
puters to check. On each computer, you run PowerCfg with the –Energy param-
eter. This generates an Energy-Report.html fi le in the default directory for the user
account used to access the computer. The energy report provides details on power
confi guration settings and issues that are causing power management not to work
correctly. If you’d rather not have to retrieve the report from each computer, you
can write the report to a share and base the report name on the computer name, as
shown in the following example:

$comp = get-content c:\computers.txt
$s = new-pssession -computername $comp
invoke-command -session $s { powercfg.exe –energy –output
"\\fileserver72\reports\$env:computername.html"}

$t = new-PSSession –computername Server24, Server45, Server36
–Credential Cpandl\WilliamS

$ses = get-content c:\test\servers.txt | new-PSSession
–Credential Cpandl\WilliamS

$comp = get-content c:\computers.txt
$s = new-pssession -computername $comp
invoke-command -session $s { powercfg.exe –energy }

$comp = get-content c:\computers.txt
$s = new-pssession -computername $comp
invoke-command -session $s { powercfg.exe –energy –output
"\\fileserver72\reports\$env:computername.html"}

CHAPTER 4 Using Sessions, Jobs, and Remoting 96

Here, you write the report to the \\fi leserver72\reports share and name the fi le
using the value of the ComputerName environment variable. Note that when you
work with PowerShell and are referencing applications and external utilities, you
must specify the .exe fi le extension with the program name.

When you are running commands on many remote computers, you might
not want to wait for the commands to return before performing other tasks. To
avoid having to wait, use Invoke-Command with the –AsJob parameter to create
a background job in each of the runspaces:

invoke-command –session $s -scriptblock {get-process moddr |
stop-process -force } -AsJob

Here, you use Invoke-Command to get and stop a named process via the $s
session. Because the command is run as a background job, the prompt returns
 immediately without waiting for the command to run on each computer.

Although being able to establish a session on many computers is handy, some-
times you might want to work interactively with a single remote computer. To do
this, you can use the Enter-PSSession cmdlet to start an interactive session with
a remote computer. At the Windows Powershell prompt, type Enter-PSSession

 ComputerName, where ComputerName is the name of the remote computer.
The command prompt changes to show that you are connected to the remote
 computer, as shown in the following example:

[Server49]: PS C:\Users\wrstanek.cpandl\Documents>

Now the commands that you type run on the remote computer just as if you had
typed them directly on the remote computer. For enhanced security through encryp-
tion of transmissions, the Enter-PSSession cmdlet also supports the –Credential and
–UseSSL parameters. You can end the interactive session using the command Exit-
PSSession or by typing exit.

Understanding Remote Execution and Object Serialization

When you are working with remote computers, you need to keep in mind the
 following:

 How commands are executed

 How objects are serialized

Whether you use Invoke-Command or Enter-PSSession with remote computers,
Windows PowerShell establishes a temporary connection, uses the connection to
run the current command, and then closes the connection each time you run a com-
mand. This is an effi cient method for running a single command or several unrelated
commands, even on a large number of remote computers.

 The New-PSSession cmdlet provides an alternative by establishing a session with
a persistent connection. With New-PSSession, Windows PowerShell establishes a

invoke-command –session $s -scriptblock {get-process moddr |
stop-process -force } -AsJob

 Using Sessions, Jobs, and Remoting CHAPTER 4 97

persistent connection and uses the connection to run any commands you enter.
Because you can run multiple commands in a single, persistent runspace, the com-
mands can share data, including the values of variables, the definitions of aliases,
and the contents of functions. New-PSSession also supports the –UseSSL parameter.

When you use Windows PowerShell locally, you work with live .NET Framework
objects, and these objects are associated with actual programs or components.
When you invoke the methods or change the properties of live objects, the changes
affect the actual program or component. And, when the properties of a program or
component change, the properties of the object that represent them change too.

Because live objects cannot be transmitted over the network, Windows Power-
Shell serializes the objects sent in remote commands. This means it converts each
object into a series of Constraint Language in XML (CLiXML) data elements for
transmission. When Windows PowerShell receives a serialized file, it converts the
XML into a deserialized object type. Although the deserialized object is an accurate
record of the properties of the program or component at execution time, it is no
longer directly associated with the originating component, and the methods are
 removed because they are no longer effective. Also, the serialized objects returned
by the Invoke-Command cmdlet have additional properties that help you determine
the origin of the command.

NOTE You can use Export-Clixml to create XML-based representations of objects

and store them in a file. The objects stored in the file are serialized. To import a

CLiXML file and create deserialized objects, you can use Import-CLixml.

Establishing Remote Background Jobs

Windows PowerShell 2.0 supports both local and remote background jobs. A back-
ground job is a command that you run asynchronously without interacting with it.
When you start a background job, the command prompt returns immediately, and
you can continue to work in the session while the job runs, even if it runs for an
extended period of time.

Using Background Jobs

PowerShell runs background jobs on the local computer by default. You can run
background jobs on remote computers by

 Starting an interactive session with a remote computer and starting a
job in the interactive session. This approach allows you to work with the
background job the same way as you would on the local computer.

 Running a background job on a remote computer that returns results
to the local computer. This approach allows you to collect the results of
background jobs and maintain them from your computer.

CHAPTER 4 Using Sessions, Jobs, and Remoting 98

 Running a background job on a remote computer and maintaining the
results on the remote computer. This approach helps ensure the job data is
secure.

PowerShell has several commands for working with background jobs. These
commands include

 Get-Job Gets objects that represent the background jobs started in the
current session. Without parameters, Get-Job returns a list of all jobs in the
current session. The job object returned does not contain the job results.
To get the results, use the Receive-Job cmdlet. You can use the parameters
of Get-Job to get background jobs by their command text, names, IDs, or
instance IDs. For command text, type the command or the part of the com-
mand with wildcards. For IDs, type an integer value that uniquely identifi es
the job in the current session. For names, type the friendly names previously
assigned to the job. An instance ID is a GUID that uniquely identifi es a job,
even when you have multiple jobs running in PowerShell. To fi nd the names,
IDs, or instance IDs of jobs, use Get-Jobs without parameters. You can use
the –State parameter to get only jobs in the specifi ed state. Valid values are
NotStarted, Running, Completed, Stopped, Failed, and Blocked.

Get-Job [-Command Commands] | [[-InstanceId] GUIDs] | [[-Name]
Names] | [[-Id] IDs] | [-State JobState]

 Receive-Job Gets the output and errors of the PowerShell background jobs
started in the current session. You can get the results of all jobs or identify
jobs by their name, ID, instance ID, computer name, location, or session, or
by inputting a job object. By default, job results are deleted after you receive
them, but you can use the –Keep parameter to save the results so that you
can receive them again. To delete the job results, receive them again without
the –Keep parameter, close the session, or use the Remove-Job cmdlet to
delete the job from the session.

Receive-Job [[-ComputerName Computers] | [-Location Locations] |
[-Session Session]] [-Job] Jobs [BasicParams]

Receive-Job [[-Id] IDs] | [[-InstanceId] GUIDS] | [[-Name] Names] |
[-State States] [BasicParams]

BasicParams=
[-Error] [-Keep] [-NoRecurse]

 Remove-Job Deletes PowerShell background jobs that were started by
using Start-Job or the –AsJob parameter of a cmdlet. Without parameters
or parameter values, Remove-Job has no effect. You can delete all jobs
or selected jobs based on their command, name, ID, instance ID, or state,
or by passing a job object to Remove-Job. Before deleting a running job,

Get-Job [-Command Commands] | [[-InstanceId] GUIDs] | [[-Name]
Names] | [[-Id] IDs] | [-State JobState]

Receive-Job [[-ComputerName Computers] | [-Location Locations] |
[-Session Session]] [-Job] Jobs [BasicParams]

Receive-Job [[-Id] IDs] | [[-InstanceId] GUIDS] | [[-Name] Names] |
[-State States] [BasicParams]

BasicParams=
[-Error] [-Keep] [-NoRecurse]

 Using Sessions, Jobs, and Remoting CHAPTER 4 99

you should use Stop-Job to stop the job. If you try to delete a running job,
Remove-Job fails. You can use the –Force parameter to delete a running
job. If you do not delete a background job, the job remains in the global job
cache until you close the session in which the job was created.

Remove-Job [-Force] [-Command Commands] | [[-Job] Jobs] |
[[-Id] IDs] | [[-InstanceId] GUIDS] | [[-Name] Names] |
[-State States]

 Start-Job Starts a Windows PowerShell background job on the local
computer. To run a background job on a remote computer, use the –AsJob
parameter of a cmdlet that supports background jobs, or use the Invoke-
Command cmdlet to run a Start-Job command on the remote computer.
When you start a Windows PowerShell background job, the job starts, but
the results do not appear immediately. Instead, the command returns an
object that represents the background job. The job object contains useful
information about the job, but it does not contain the results. This approach
allows you to continue working while the job runs.

Start-Job [-FilePath Path] [AddtlParams]
Start-Job [-ScriptBlock] ScriptBlock [AddtlParams]

AddtlParams=
[-ArgumentList Args] [-Authentication {<Default> | <Basic> |
<Negotiate> | <NegotiateWithImplicitCredential> | <Credssp>}]
[-ConfigurationName String] [-Credential Credential]
[-InputObject Object] [-Name String] [-NoCompression]

 Stop-Job Stops PowerShell background jobs that are in progress. You can
stop all jobs or stop selected jobs based on their name, ID, instance ID, or state,
or by passing a job object to Stop-Job. When you stop a background job,
PowerShell completes all tasks that are pending in that job queue and then
ends the job. No new tasks are added to the queue after you stop the job.
Stop-Job does not delete background jobs. To delete a job, use Remove-Job.

Stop-Job [-PassThru] [[-Job] Jobs] | [[-Id] IDs] |
[[-InstanceId] GUIDS] | [[-Name] Names] | [-State States]

 Wait-Job Waits for PowerShell background jobs to complete before it dis-
plays the command prompt. You can wait until any specifi c background jobs
are complete or until all background jobs are complete. Use the –Timeout
parameter to set a maximum wait time for the job. When the commands in
the job are complete, Wait-Job displays the command prompt and returns a
job object so that you can pipe it to another command. Use the –Any param-
eter to display the command prompt when any job completes. By default,

Remove-Job [-Force] [-Command Commands] | [[-Job] Jobs] |
[[-Id] IDs] | [[-InstanceId] GUIDS] | [[-Name] Names] |
[-State States]

Start-Job [-FilePath Path] [AddtlParams]
Start-Job [-ScriptBlock] ScriptBlock [AddtlParams]k

AddtlParams=
[-ArgumentList Args] [-Authentication {<Default> | <Basic> |
<Negotiate> | <NegotiateWithImplicitCredential> | <Credssp>}]
[-ConfigurationName String] [-Credential Credential]
[-InputObject Object] [-Name String] [-NoCompression]

Stop-Job [-PassThru] [[-Job] Jobs] | [[-Id] IDs] |
[[-InstanceId] GUIDS] | [[-Name] Names] | [-State States]

CHAPTER 4 Using Sessions, Jobs, and Remoting 100

Wait-Job waits until all of the specifi ed jobs are complete before displaying
the prompt.

Stop-Job [-Any] [-TimeOut WaitTime] [[-Job] Jobs] | [[-Id] IDs] |
[[-InstanceId] GUIDS] | [[-Name] Names] | [-State States]

Some cmdlets can be run as background jobs automatically using an –AsJob
parameter. You can get a complete list of all cmdlets with an –AsJob parameter
by typing the following command: get-help * -parameter AsJob. These cmdlets
include :

 Invoke-Command Runs commands on local and remote computers.

 Invoke-WmiMethod Calls Windows Management Instrumentation (WMI)
methods.

 Test-Connection Sends Internet Control Message Protocol (ICMP) echo
request packets (pings) to one or more computers.

 Restart-Computer Restarts (reboots) the operating system on local and
remote computers.

 Stop-Computer Stops (shuts down) local and remote computers.

The basic way background jobs work is as follows:

 1. You start a background job using Start-Job or the –AsJob parameter of a
cmdlet.

 2. The job starts, but the results do not appear immediately. Instead, the com-
mand returns an object that represents the background job.

 3. As necessary, you work with the job object. The job object contains useful
information about the job, but it does not contain the results. This approach
allows you to continue working while the job runs.

 4. To view the results of a job started in the current session, you use Receive-Job.
You can identify jobs by their name, ID, instance ID, computer name, location,
or session, or by inputting a job object to Receive-Job. After you receive a job,
the job results are deleted (unless you use the –Keep parameter).

Starting Jobs in Interactive Sessions

 You can start any interactive session. The procedure for starting a background job
is almost the same whether you are working with your local computer or a remote
computer. When you work with the local computer, all operations occur on the lo-
cal computer. When you work with a remote computer, all operations occur on the
remote computer.

 You can use the Enter-PSSession cmdlet to start an interactive session with a
remote computer. Use the –ComputerName parameter to specify the name of the
remote computer, such as in the following:

enter-pssession -computername filesvr32

Stop-Job [-Any] [-TimeOut WaitTime] [[-Job] Jobs] | [[-Id] IDs] |
[[-InstanceId] GUIDS] | [[-Name] Names] | [-State States]

 Using Sessions, Jobs, and Remoting CHAPTER 4 101

 NOTE To end the interactive session later, type exit-pssession.

 You start a background job in a local or remote session using the Start-Job cmd-
let. You can reference a script block with the –ScriptBlock parameter or a local script
using the –FilePath parameter.

 The following command runs a background job that gets the events in the
System, Application, and Security logs. Because Start-Job returns an object that
represents the job, this command saves the job object in the $job variable. Type the
command as a single line:

$job = start-job -scriptblock {$share = "\\FileServer85\logs";
$logs = "system","application","security";
foreach ($log in $logs) {
$filename = "$env:computername".ToUpper() + "$log" + "log" +
(get-date -format yyyyMMdd) + ".log";
Get-EventLog $log | set-content $share\$filename; }
}

 Or use the back apostrophe to continue the line as shown here:

$job = start-job -scriptblock {$share = "\\FileServer85\logs"; `
$logs = "system","application","security"; `
foreach ($log in $logs) { `
$filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"; `
Get-EventLog $log | set-content $share\$filename; } `
}

 Alternatively, you can store the commands as a script on the local computer
and then reference the local script using the –FilePath parameter as shown in the
examples that follow.

 Command line

$job = start-job -filepath c:\scripts\eventlogs.ps1

 Source for Eventlogs.ps1

$share = "\\FileServer85\logs"
$logs = "system","application","security"

foreach ($log in $logs) {
 $filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"
 Get-EventLog $log | set-content $share\$filename
}

$job = start-job -scriptblock {$share = "\\FileServer85\logs";
$logs = "system","application","security";
foreach ($log in $logs) {
$filename = "$env:computername".ToUpper() + "$log" + "log" +
(get-date -format yyyyMMdd) + ".log";
Get-EventLog $log | set-content $share\$filename; }
}

$job = start-job -scriptblock {$share = "\\FileServer85\logs"; `
$logs = "system","application","security"; `
foreach ($log in $logs) { `
$filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"; `
Get-EventLog $log | set-content $share\$filename; } `
}

Command line

$job = start-job -filepath c:\scripts\eventlogs.ps1

Source for Eventlogs.ps1

$share = "\\FileServer85\logs"
$logs = "system","application","security"

foreach ($log in $logs) {
 $filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"
 Get-EventLog $log | set-content $share\$filename
}

CHAPTER 4 Using Sessions, Jobs, and Remoting 102

The script must reside on the local computer or in a directory that the local com-
puter can access. When you use FilePath, Windows PowerShell converts the contents
of the specifi ed script fi le to a script block and runs the script block as a background
job.

While the job runs, you can continue working and run other commands, includ-
ing other background jobs. However, you must keep the interactive session open
until the job completes. Otherwise, the jobs will be interrupted, and the results will
be lost.

NOTE You don’t have to store Job objects in variables. However, doing so makes it

easier to work with Job objects. But if you do use variables and you run multiple jobs,

be sure that you store the returned Job objects in different variables, such as $job1,

$job2, and $job3.

You use the Get-Job cmdlet to do the following:

 Find out if a job is complete.

 Display the command passed to the job.

 Get information about jobs so that you can work with them.

 You can get all jobs or identify jobs by their name, ID, instance ID, computer
name, location, or session, or by inputting a job object. PowerShell gives jobs
sequential IDs and names automatically. The fi rst job you run has an ID of 1 and a
name of Job1, the second job you run has an ID of 2 and a name of Job2, and so on.
You can also name jobs when you start them using the –Name parameter. In the
following example, you create a job named Logs:

start-job -filepath c:\scripts\eventlogs.ps1 –name Logs

 You can then get information about this job using Get-Job and the –Name
 parameter as shown in the following example and sample output:

get-job –name Logs

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

1 Logs Failed False filesvr32 $share = "\\FileServer...

Because this job failed to run, you won’t necessarily be able to receive its output
or error results. You can, however, take a closer look at the job information. For
more detailed information, you need to format the output in a list as shown in this
example and sample output:

get-job –name logs | format-list

get-job –name Logs

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

1 Logs Failed False filesvr32 $share = "\\FileServer...

get-job –name logs | format-list

 Using Sessions, Jobs, and Remoting CHAPTER 4 103

HasMoreData : False

StatusMessage :

Location : filesvr32

Command : $share = "\\FileServer85\logs"; $logs = "system",

"application","security"; foreach ($log in $logs) { $f

ilename = "$env:computername".ToUpper() + "$log" + "log" + (get-date

-format yyyyMMdd) + ".log"; Get-Ev

entLog $log | set-content $share\$filename; }

JobStateInfo : Failed

Finished : System.Threading.ManualResetEvent

InstanceId : 679ed475-4edd-4ba5-ae79-e1e9b3aa590e

Id : 3

Name : Logs

ChildJobs : {Job4}

Output : {}

Error : {}

Progress : {}

Verbose : {}

Debug : {}

Warning : {}

 If you are running several jobs, type get-job to check the status of all jobs as
shown in the following example and sample output:

get-job

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

1 Job1 Completed False localhost $share = "\\FileServer...

3 Job3 Running True localhost $logs = "system","appl...

 When a job completes, you can use the Receive-Job cmdlet to get the results of
the job. However, keep in mind that if a job doesn’t produce output or errors to the
PowerShell prompt, there won’t be any results to receive.

 You can receive the results of all jobs by typing receive-job, or you can iden-
tify jobs by their name, ID, instance ID, computer name, location, or session, or by
inputting a job object. The following example receives results by name:

receive-job –name Job1, Job3

 The following example receives results by ID:

receive-job –id 1, 3

 Job results are deleted automatically after you receive them. Use the –Keep
parameter to save the results so that you can receive them again. To delete the job

HasMoreData : False

StatusMessage :

Location : filesvr32

Command : $share = "\\FileServer85\logs"; $logs = "system",

"application","security"; foreach ($log in $logs) { $f

ilename = "$env:computername".ToUpper() + "$log" + "log" + (get-date

-format yyyyMMdd) + ".log"; Get-Ev

entLog $log | set-content $share\$filename; }

JobStateInfo : Failed

Finished : System.Threading.ManualResetEvent

InstanceId : 679ed475-4edd-4ba5-ae79-e1e9b3aa590e

Id : 3

Name : Logs

ChildJobs : {Job4}

Output : {}

Error : {}

Progress : {}

Verbose : {}

Debug : {}

Warning : {}

get-job

Id Name State HasMoreData Location Command

-- ---- ----- ----------- -------- -------

1 Job1 Completed False localhost $share = "\\FileServer...

3 Job3 Running True localhost $logs = "system","appl...

CHAPTER 4 Using Sessions, Jobs, and Remoting 104

results, receive the job results again without the –Keep parameter, close the session,
or use the Remove-Job cmdlet to delete the job from the session.

 Alternatively, you can write the job results to a fi le. The following example writes
the job results to C:\logs\mylog.txt:

receive-job –name Job1 > c:\logs\mylog.txt

 When working with a remote computer, keep in mind that this command runs on
the remote computer. As a result, the fi le is created on the remote computer. If you
are using one log for multiple jobs, be sure to use the append operator as shown in
this example:

receive-job –name Job1 >> c:\logs\mylog.txt
receive-job –name Job2 >> c:\logs\mylog.txt
receive-job –name Job3 >> c:\logs\mylog.txt

 While in the current session with the remote computer, you can view the con-
tents of the results fi le by typing the following command:

get-content c:\logs\mylog.txt

If you close the session with the remote computer, you can use Invoke-Command
to view the fi le on the remote computer as shown here:

$ms = new-pssession -computername fileserver84
invoke-command -session $ms -scriptblock {get-content c:\logs\mylog.txt}

Running Jobs Noninteractively

Rather than working in an interactive session, you can use the Invoke-Command
cmdlet with the –AsJob parameter to start background jobs and return results to the
local computer. When you use the –AsJob parameter, the job object is created on
the local computer, even though the job runs on the remote computer. When the
job completes, the results are returned to the local computer.

 In the following example, we create a noninteractive PowerShell session with
three remote computers and then use Invoke-Command to run a background
job that gets the events in the System, Application, and Security logs. This is the
same job created earlier, only now the job runs on all the computers listed in the
–ComputerName parameter. Type the command as a single line:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65
Invoke-command –session $s
-asjob -scriptblock {$share = "\\FileServer85\logs";
$logs = "system","application","security";
foreach ($log in $logs) {
$filename = "$env:computername".ToUpper() + "$log" + "log" +
(get-date -format yyyyMMdd) + ".log";
Get-EventLog $log | set-content $share\$filename; }
}

receive-job –name Job1 >> c:\logs\mylog.txt
receive-job –name Job2 >> c:\logs\mylog.txt
receive-job –name Job3 >> c:\logs\mylog.txt

$ms = new-pssession -computername fileserver84
invoke-command -session $ms -scriptblock {get-content c:\logs\mylog.txt}

$s = new-pssession -computername fileserver34, dataserver18, dcserver65
Invoke-command –session $s
-asjob -scriptblock {$share = "\\FileServer85\logs";
$logs = "system","application","security";
foreach ($log in $logs) {
$filename = "$env:computername".ToUpper() + "$log" + "log" +
(get-date -format yyyyMMdd) + ".log";
Get-EventLog $log | set-content $share\$filename; }
}

 Using Sessions, Jobs, and Remoting CHAPTER 4 105

 Or use the back apostrophe to continue the line as shown here:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65 `
Invoke-command –session $s `
-asjob -scriptblock {$share = "\\FileServer85\logs"; `
$logs = "system","application","security"; `
foreach ($log in $logs) { `
$filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"; `
Get-EventLog $log | set-content $share\$filename; } `
}

 Alternatively, you can store the commands as a script on the local computer
and then reference the local script using the –FilePath parameter as shown in the
examples that follow.

 Command line

$s = new-pssession -computername fileserver34, dataserver18, dcserver65
Invoke-command –session $s -asjob -filepath c:\scripts\eventlogs.ps1

 Source for Eventlogs.ps1

$share = "\\FileServer85\logs"
$logs = "system","application","security"

foreach ($log in $logs) {
 $filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"
 Get-EventLog $log | set-content $share\$filename
}

 The script must reside on the local computer or in a directory that the local com-
puter can access. As before, when you use FilePath, Windows PowerShell converts
the contents of the specifi ed script fi le to a script block and runs the script block as
a background job.

 Now, you don’t necessarily have to run Invoke-Command via a noninteractive
session. However, the advantage of doing so is that you can now work with the job
objects running in the session. For example, to get information about the jobs on all
three computers, you type the following command:

get-job

 To receive job results you type this command:

receive-job -keep

$s = new-pssession -computername fileserver34, dataserver18, dcserver65 `
Invoke-command –session $s `
-asjob -scriptblock {$share = "\\FileServer85\logs"; `
$logs = "system","application","security"; `
foreach ($log in $logs) { `
$filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"; `
Get-EventLog $log | set-content $share\$filename; } `
}

Command line

$s = new-pssession -computername fileserver34, dataserver18, dcserver65
Invoke-command –session $s -asjob -filepath c:\scripts\eventlogs.ps1

Source for Eventlogs.ps1

$share = "\\FileServer85\logs"
$logs = "system","application","security"

foreach ($log in $logs) {
 $filename = "$env:computername".ToUpper() + "$log" + "log" + `
(get-date -format yyyyMMdd) + ".log"
 Get-EventLog $log | set-content $share\$filename
}

 CHAPTER 4 Using Sessions, Jobs, and Remoting 106

Or you can type the following if you want to save the results to a file on the local
computer:

receive-job > c:\logs\mylog.txt

A variation on this technique is to use the Invoke-Command cmdlet to run the
Start-Job cmdlet. This technique allows you to run background jobs on multiple
computers and keep the results on the remote computers. Here’s how this works:

 1. You use Invoke-Command without the –AsJob parameter to run the Start-
Job cmdlet.

 2. A job object is created on each remote computer.

 3. Commands in the job are run separately on each remote computer.

 4. Job results are maintained separately on each remote computer.

 5. You work with the job objects and results on each remote computer
 separately.

Here, you use Invoke-Command to start jobs on three computers and store the
Job objects in the $j variable:

$s = new-pssession -computername fileserver34, dataserver18, dcserver65
$j = invoke-command –session $s {start-job -filepath c:\scripts\elogs.ps1}

Again, you don’t necessarily have to run Invoke-Command via a noninteractive
session. However, the advantage of doing so is that you can now work with the job
objects running on all three computers via the session. For example, to get informa-
tion about the jobs on all three computers, you type the following command:

invoke-command -session $s -scriptblock {get-job}

Or, because you stored the Job objects in the $j variable, you also could enter:

$j

To receive job results, you type this command:

invoke-command -session $s -scriptblock { param($j) receive-job –job $j
-keep} –argumentlist $j

Or you can do the following if you want to save the results to a file on each
remote computer:

invoke-command -session $s -command {param($j) receive-job –job $j > c:\
logs\mylog.txt} –argumentlist $j

In both examples, you use Invoke-Command to run a Receive-Job command in
each session in $s. Because $j is a local variable, the script block uses the “param”
keyword to declare the variable in the command and the ArgumentList parameter
to supply the value of $j.

 Using Sessions, Jobs, and Remoting CHAPTER 4 107

Working Remotely Without WinRM

 Some cmdlets have a –ComputerName parameter that lets you work with a remote
computer without using Windows PowerShell remoting. This means you can use the
cmdlet on any computer that is running Windows PowerShell, even if the computer
is not confi gured for Windows PowerShell remoting. These cmdlets include the
 following:

 Get-WinEvent Get-Counter Get-EventLog

 Clear-EventLog Write-EventLog Limit-EventLog

 Show-EventLog New-EventLog Remove-EventLog

 Get-WmiObject Get-Process Get-Service

 Set-Service Get-HotFix Restart-Computer

 Stop-Computer Add-Computer Remove-Computer

 Rename-Computer Reset-ComputerMachinePassword

 Because these cmdlets don’t use remoting, you can run any of these cmdlets
on a remote computer in a domain simply by specifying the name of one or more
remote computers in the –ComputerName parameter. However, Windows policies
and confi guration settings must allow remote connections, and you must still have
the appropriate credentials.

 The following command runs Get-WinEvent on PrintServer35 and FileServer17:

get-winevent –computername printserver35, fileserver17

 When you use ComputerName, these cmdlets return objects that include the
name of the computer that generated the data. The remote computer name is
stored in the MachineName property. Typically, the MachineName property is not
displayed by default. The following example shows how you can use the Format-
Table cmdlet to add the MachineName property to the output:

$procs = {get-process -computername Server56, Server42, Server27 |
sort-object -property Name}

&$procs | format-table Name, Handles, WS, CPU, MachineName –auto

Name Handles WS CPU MachineName

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

 . . .

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

$procs = {get-process -computername Server56, Server42, Server27 |
sort-object -property Name}

&$procs | format-table Name, Handles, WS, CPU, MachineName –auto

Name Handles WS CPU MachineName

---- ------- -- --- --------------

acrotray 52 3948544 0 Server56

AlertService 139 7532544 Server56

csrss 594 20463616 Server56

csrss 655 5283840 Server56

CtHelper 96 6705152 0.078125 Server56

. . .

acrotray 43 3948234 0 Server42

AlertService 136 7532244 Server42

CHAPTER 4 Using Sessions, Jobs, and Remoting 108

csrss 528 20463755 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

You can get a complete list of all cmdlets with a –ComputerName parameter
by typing the following command: get-help * -parameter ComputerName. To
determine whether the –ComputerName parameter of a particular cmdlet requires
Windows PowerShell remoting, display the parameter description by typing
get-help CmdletName -parameter ComputerName, where CmdletName is the
actual name of the cmdlet, such as

get-help Reset-ComputerMachinePassword -parameter ComputerName

If the parameter doesn’t require remoting, this is stated explicitly, as shown in
this example:

-ComputerName <string[]>

Resets the password for the specified computers. Specify one or more remote

computers. The default is the local computer.

Type the NetBIOS name, an IP address, or a fully qualifi ed domain name of a
remote computer. To specify the local computer, type the computer name, a dot (.),
or localhost.

This parameter does not rely on Windows PowerShell remoting. You can use the
–ComputerName parameter even if your computer is not confi gured to run remote
commands.

csrss 528 20463755 Server42

csrss 644 5283567 Server42

CtHelper 95 6705576 0.067885 Server42

acrotray 55 3967544 0 Server27

AlertService 141 7566662 Server27

csrss 590 20434342 Server27

csrss 654 5242340 Server27

CtHelper 92 6705231 0.055522 Server27

-ComputerName <string[]>

Resets the password for the specified computers. Specify one or more remote

computers. The default is the local computer.

109

CHAP TER 5

Navigating Core Windows
PowerShell Structures

Working with Expressions and Operators 109

Working with Variables and Values 122

Working with Strings 148

Working with Arrays and Collections 159

The core structures of any programming language determine what you can do
with the available options and how you can use the programming language.

The programming language at the heart of Windows PowerShell is C#, and the
core structures of PowerShell include

 Expressions and operators

 Variables, values, and data types

 Strings, arrays, and collections

Whenever you work with Windows PowerShell, you use these core structures.
You’ll want to read this chapter closely to learn the core mechanics and determine
exactly how you can put PowerShell to work. Because we discuss these core
mechanics extensively in this chapter, we won’t rehash these discussions when we
put the core mechanics to work in upcoming chapters.

Working with Expressions and Operators

In Windows PowerShell, an expression is a calculation that evaluates an equation
and returns a result. PowerShell supports many types of expressions, including
arithmetic expressions (which return numerical values), assignment expressions
(which assign or set a value), and comparison expressions (which compare values).

An operator is the element of an expression that tells PowerShell how to
 perform the calculation. You use operators as part of expressions to perform
mathematical operations, make assignments, and compare values. The three

 CHAPTER 5 Navigating Core Windows PowerShell Structures110

 common operator types are arithmetic operators, assignment operators, and com-
parison operators. Windows PowerShell also supports an extended type of operator
used with regular expressions, logical operators, and type operators.

Arithmetic, Grouping, and Assignment Operators

Windows PowerShell supports a standard set of arithmetic operators. These operators
are summarized in Table 5-1.

TABLE 5-1 Arithmetic Operators in Windows PowerShell

OPERATOR OPERATION FOR NUMBERS FOR STRINGS FOR ARRAYS EXAMPLE

+ Addition Returns their
sum

Returns a
joined string

Returns a
joined array

3 + 4

/ Division Returns their
 quotient

N/A N/A 5 / 2

% Modulus Returns the
remainder of
their division

N/A N/A 5 % 2

* Multiplication Returns their
 product

Appends
the string
to itself the
number of
times you
specify

Appends
the array
to itself the
number of
times you
specify

6 * 3

– Subtraction,
negation

Returns their
 difference

N/A N/A 3 – 2

Table 5-2 lists the assignment operators available in PowerShell. Assignment
 operators assign one or more values to a variable and can perform numeric opera-
tions on the values before the assignment. PowerShell supports two special assignment
operators that you might not be familiar with: the increment operator (++) and the
decrement operator (--). These operators provide a quick way to add or subtract 1
from the value of a variable, property, or array element.

TABLE 5-2 Windows PowerShell Assignment Operators

OPERATOR OPERATION EXAMPLE MEANING

= Assign value $a = 7 $a = 7

+= Add or append to cur-
rent value

$g += $h $g = $g + $h

–= Subtract from current
value

$g –= $h $g = $g – $h

 Navigating Core Windows PowerShell Structures CHAPTER 5 111

 TABLE 5-2 Windows PowerShell Assignment Operators

 OPERATOR OPERATION EXAMPLE MEANING

 *= Multiply current value $g *= $h $g = $g * $h

 /= Divide current value $g /= $h $g = $g / $h

 %= Modulus current value $g %= $h $g = $g % $h

 ++ Increment by 1 $g++ or ++$g $g = $g + 1

 -- Decrement by 1 $g-- or --$g $g = $g – 1

 As you can see in Tables 5-1 and 5-2, there are few surprises when it comes to
PowerShell’s arithmetic and assignment operators. Still, there are a few things worth
mentioning. In PowerShell, you determine remanders using the Modulus function.
In this example, $Remainder is set to 0 (zero):

$Remainder = 12 % 4

 However, $Remainder is set to 1 with the following expression:

$Remainder = 10 % 3

 You can negate a value using the – operator. In the following example, $Answer
is set to –15:

$Answer = -5 * 3

 Command expansion and execution operators bring together sets of elements.
The grouping operators are described in the following list and examples:

 & Used to invoke a script block or the name of a command or function.

$a = {Get-Process –id 0}
&$a

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 0 0 0 24 0 0 Idle

 () Used to group expression operators. It returns the result of the
 expression.

$a = (5 + 4) * 2; $a

18

 $() Used to group collections of statements. The grouped commands are
executed, and then results are returned.

$a = {Get-Process –id 0}
&$a

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 0 0 0 24 0 0 Idle

$a = (5 + 4) * 2; $a

18

CHAPTER 5 Navigating Core Windows PowerShell Structures112

$($p= "win*"; get-process $p)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 106 4 1448 4092 46 636 wininit

 145 4 2360 6536 56 780 winlogon

 @() Used to group collections of statements, execute them, and insert the
results into an array.

@(get-date;$env:computername;$env:logonserver)

Friday, February 12, 2010 9:01:49 AM

CORSERVER34

\\CORDC92

NOTE An array is simply a data structure for storing a series of values. You’ll learn

more about arrays in the “Working with Arrays and Collections” section.

 If you mix operators, PowerShell performs calculations using the same precedence
order you learned in school. For example, multiplication and division in equations
are carried out before subtraction and addition, which means

5 + 4 * 2 = 13

 and

10 / 10 + 6 = 7

 Table 5-3 shows the precedence order for arithmetic operators. As the table
shows, the grouping is always evaluated fi rst, and then PowerShell determines
whether any values have been incremented or decremented. Next, PowerShell sets
positive and negative values as such. Then PowerShell performs multiplication and
division before performing any modulus operations. Finally, PowerShell performs
addition and subtraction and then assigns the results as appropriate.

 TABLE 5-3 Operator Precedence in Windows PowerShell

ORDER OPERATION

 1 Grouping () { }

 2 Increment ++, Decrement --

 3 Unary + -

$($p= "win*"; get-process $p)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 106 4 1448 4092 46 636 wininit

 145 4 2360 6536 56 780 winlogon

@(get-date;$env:computername;$env:logonserver)

Friday, February 12, 2010 9:01:49 AM

CORSERVER34

\\CORDC92

 Navigating Core Windows PowerShell Structures CHAPTER 5 113

 TABLE 5-3 Operator Precedence in Windows PowerShell

 ORDER OPERATION

 4 Multiplication *, Division /

 5 Remainders %

 6 Addition +, Subtraction –

 7 Assignment =

 One of the interesting things about Windows PowerShell is that it supports the
data storage concepts of

 Kilobytes (KB)

 Megabytes (MB)

 Gigabytes (GB)

 Terabytes (TB)

 Petabytes (PB)

 Knowing this, you can perform some simple calculations at the prompt. For
example, if you are backing up a drive that uses 1 TB of storage to Blu-Ray DVD,
you might want to fi nd out the maximum number of dual-layer Blu-Ray DVDs you’ll
need, and you can do this simply by entering

1TB / 50GB

 The answer is

20.48

 In the following example, you list all fi les in the C:\Data directory that are larger
than 100 KB:

get-item c:\data* | where-object {$_.length -gt 100kb}

Comparison Operators

 When you perform comparisons, you check for certain conditions, such as whether
A is greater than B or whether A is equal to C. You primarily use comparison
 operators with conditional statements, such as If and If Else.

 Table 5-4 lists the comparison operators available in PowerShell. Most of these
operators are straightforward. By default, PowerShell uses non–case-sensitive
comparisons. However, you can perform case-sensitive and non–case-sensitive
comparisons, respectively, by adding the letter C or I to the operator, such as –ceq
or –ieq.

get-item c:\data* | where-object {$_.length -gt 100kb}

 CHAPTER 5 Navigating Core Windows PowerShell Structures114

TABLE 5-4 Windows PowerShell Comparison Operators

OPERATOR OPERATION EXAMPLE MEANING OUTPUT

–eq Equal $g –eq $h Is g equal to h? Boolean

Include string $g –eq $h Does g include h? Boolean

–ne Not equal $g –ne $h Is g not equal to h? Boolean

Different
string

$g –ne $h Does g include
a different value
than h?

Boolean

–lt Less than $g –lt $h Is g less than h? Boolean

–gt Greater than $g –gt $h Is g greater than h? Boolean

–le Less than or
equal

$g –le $h Is g less than or
equal to h?

Boolean

–ge Greater than
or equal

$g –ge $h Is g greater than or
equal to h?

Boolean

–contains Contains $g –contains $h Does g include h? Boolean

–notcontains Does not
contain

$g –notcontains $h Does g not
include h?

Boolean

–like Like $g –like $h Does g include a
value like h?

Boolean

–notlike Not like $g –notlike $h Does g not include
a value like h?

Boolean

–match Match $g –match $h Does g include any
matches for the
 expression defined
in h?

Boolean

–notmatch Not match $g –notmatch $h Does g not include
matches for the
expression defined
in h?

Boolean

–replace Replace $g –replace $h, $i If g has occurrences
of h, replace them
with i.

String

Note that you can use these operators to compare numbers as well as strings
and that there is no set precedence order for comparisons. Comparisons are always
performed from left to right.

 Navigating Core Windows PowerShell Structures CHAPTER 5 115

 Most of the comparison operators return a Boolean value that indicates whether
a match was found in the compared values. In this example and sample output, we
evaluate whether $a equals $b, and the output is False because the values are different:

$a = 5; $b = 6
$a –eq $b

False

 In this example and sample output, we evaluate whether $a does not equal $b,
and the output is True because the values are different:

$a = 5; $b = 6
$a –ne $b

True

 In this example and sample output, we evaluate whether $a is less than $b, and
the output is True:

$a = 5; $b = 6
$a –lt $b

True

 When you are working with arrays and collections, the –eq, –ne, –lt, –gt, –le, and
–ge operators return all values that match the given expression. For example, the
–eq operator checks to see if an array of values contains any identical values. If it
does, the output shows all the identical values as shown in this example:

$a = "iexplorer", "iexplorer", "powershell"; $b = "iexplorer"
$a –eq $b

iexplorer

iexplorer

 Similarly, when you are working with arrays and collections, the –ne operator
checks to see if an array of values contains values other than a particular value. If it
does, the output shows the different values as shown in this example:

$a = "svchost", "iexplorer", "powershell"; $b = "iexplorer"
$a –ne $b

svchost

powershell

$a = 5; $b = 6
$a –eq $b

False

$a = 5; $b = 6
$a –ne $b

True

$a = 5; $b = 6
$a –lt $b

True

$a = "iexplorer", "iexplorer", "powershell"; $b = "iexplorer"
$a –eq $b

iexplorer

iexplorer

$a = "svchost", "iexplorer", "powershell"; $b = "iexplorer"
$a –ne $b

svchost

powershell

CHAPTER 5 Navigating Core Windows PowerShell Structures116

You use the –contains and –notcontains operators with strings, arrays, and col-
lections. These operators are used to determine whether there is or is not an identi-
cal match for a value. In the following example, you check to see whether $a has a
resulting match for winlogon:

$a = "svchost", "iexplorer", "powershell"
$a –contains "winlogon"

False

The –like, –notlike, –match, and –notmatch operators are used for pattern
matching. With –like and –notlike, you can use wildcard characters to determine
whether a value is like or not like another value. In the following example, you check
to see whether $a has a resulting match for *host:

$a = "svchost"
$a –like "*host"

True

In examples in other chapters, I’ve used the match all wildcard (*) to match part
of a string. PowerShell supports several other wildcards as well, including ? and [].
Table 5-5 summarizes these wildcards and their uses.

 TABLE 5-5 Wildcard Characters in Windows PowerShell

WILDCARD

CHARACTER DESCRIPTION EXAMPLE MATCH

* Matches zero or more
characters

help *-alias export-alias, import-
alias, get-alias,
 new-alias, set-alias

? Matches exactly
one character in the
 specifi ed position

help ??port-alias export-alias,
 import-alias

[] Matches one character
in a specifi ed range
of characters

help [a-z]e[t-w]-
alias

get-alias, new-alias,
set-alias

[] Matches one character
in a specifi ed subset
of characters

help [efg]et-alias get-alias

$a = "svchost", "iexplorer", "powershell"
$a –contains "winlogon"

False

$a = "svchost"
$a –like "*host"

True

 Navigating Core Windows PowerShell Structures CHAPTER 5 117

 When you are working with arrays and collections, the –like and –notlike op-
erators return all values that match the given expression. The following example
returns two values that are like 4:

1,1,2,3,4,5,5,6,3,4 -like 4

4
4

 The following example returns fi ve values that are not like 4:

2,3,4,5,5,6,4 -notlike 4

2
3
5
5
6

 With –match and –notmatch, you use regular expressions to determine whether
a value does or does not contain a match for an expression. You can think of regular
expressions as an extended set of wildcard characters. In the following example, you
check to see whether $a contains the letter s, t, or u:

$a = "svchost"
$a –match "[stu]"

True

 Table 5-6 shows the characters you can use with regular expressions. When you
use .NET Framework regular expressions, you also can add .NET Framework quanti-
fi ers to more strictly control what is considered a match.

TABLE 5-6 Characters Used with Regular Expressions

 CHARACTER DESCRIPTION RETURNS TRUE…

 [chars] Matches exact characters anywhere
in the original value.

“powershell” –match “er”

 . Matches any single character. “svchost” –match “s…..t”

 [value] Matches at least one of the characters
in the brackets.

“get” –match “g[aeiou]t”

1,1,2,3,4,5,5,6,3,4 -like 4

4
4

2,3,4,5,5,6,4 -notlike 4

2
3
5
5
6

$a = "svchost"
$a –match "[stu]"

True

 CHAPTER 5 Navigating Core Windows PowerShell Structures118

TABLE 5-6 Characters Used with Regular Expressions

CHARACTER DESCRIPTION RETURNS TRUE…

[range] Matches at least one of the charac-
ters within the range. Use a hyphen
(-) to specify a block of contiguous
characters.

“out” –match “[o-r]ut”

[̂] Matches any character except those
in brackets.

“bell” –match “[̂ tuv]ell”

^ Matches the beginning characters. “powershell” –match “̂ po”

$ Matches the end characters. “powershell” –match “ell$”

* Matches any pattern in a string. “powershell” –match “p*”

? Matches a single character in a
string.

“powershell” –match
 “powershel?”

+ Matches repeated instances of the
preceding characters.

“zbzbzb” –match “zb+”

\ Matches the character that follows
as a literal character. For example,
when \ precedes a double quota-
tion mark, PowerShell interprets the
double quotation mark as a charac-
ter, not as a string delimiter.

“Shell$” –match “Shell\$”

.NET REGEX

\p{name} Matches any character in the named
character class specified by {name}.
Supported names are Unicode
groups and block ranges—for
example, Ll, Nd, Z, IsGreek, and
IsBoxDrawing.

“abcd” –match “\p{Ll}+”

\P{name} Matches text not included in groups
and block ranges specified in
{name}.

1234 –match “\P{Ll}+”

\w Matches any word character.
Equivalent to the Unicode character
 categories [\p{Ll} \p{Lu}\p{Lt}\
p{Lo}\p{Nd}\p{Pc}]. If ECMAScript-
 compliant behavior is specified
with the ECMAScript option, \w is
equivalent to [a-zA-Z_0-9].

“abcd defg” –match “\w+”

 Navigating Core Windows PowerShell Structures CHAPTER 5 119

TABLE 5-6 Characters Used with Regular Expressions

CHARACTER DESCRIPTION RETURNS TRUE…

\W Matches any nonword character.
Equivalent to the Unicode categories
[̂ \p{Ll}\p{Lu}\p{Lt} \p{Lo}\p{Nd}\
p{Pc}].

“abcd defg” –match “\W+”

\s Matches any white-space character.
Equivalent to the Unicode character
categories [\f\n\r\t\v\x85\p{Z}].

“abcd defg” –match “\s+”

\S Matches any non–white-space
character. Equivalent to the Unicode
character categories [̂ \f\n\r\t\v\
x85\p{Z}].

“abcd defg” –match “\S+”

\d Matches any decimal digit. Equiva-
lent to \p{Nd} for Unicode and [0–9]
for non-Unicode behavior.

12345 –match “\d+”

\D Matches any nondigit. Equivalent to
\P{Nd} for Unicode and [̂ 0-9] for
non-Unicode behavior.

“abcd” –match “\D+”

.NET FRAMEWORK

QUANTIFER

* Matches zero or more occurrences
of a pattern specified in a .NET
Framework regex.

“abc” –match “\w*”

? Matches zero or one occurrences
of a pattern specified in a .NET
Framework regex.

“abc” –match “\w?”

{n} Matches exactly n occurrences of a
pattern specified in a .NET Frame-
work regex.

“abc” –match “\w{2}”

{n,} Matches at least n occurrences of a
pattern specified in a .NET Frame-
work regex.

“abc” –match “\w{2,}”

{n,m} Matches at least n occurrences of a
pattern specified in a .NET Frame-
work regex, but no more than m.

“abc” –match “\w{2,3}”

In addition to using the –match and –notmatch operators with regular expres-
sions, you can explicitly declare regular expressions and then check values against

CHAPTER 5 Navigating Core Windows PowerShell Structures120

the regular expression. The following example declares a regular expression that
matches strings with the letters a to z or A to Z:

[regex]$regex="^([a-zA-Z]*)$"

When you work with regular expressions, you use the ^ to represent the begin-
ning of a string and $ to represent the end of a string. You then use parentheses to
defi ne a group of characters to match. The value [a-zA-Z]* specifi es that we want
to match zero or more occurrences of the letters a to z or A to Z.

Now that we’ve defi ned a regular expression, we can use the IsMatch() method
of the expression to verify that a value matches or does not match the expression as
shown in the following example:

$a ="Tuesday"
[regex]$regex="^([a-zA-Z]*)$"
$regex.ismatch($a)

True

However, if we use a string with numbers, spaces, punctuation, or other special
characters, the IsMatch test fails as shown in the following example:

$days ="Monday Tuesday"
[regex]$regex="^([a-zA-Z]*)$"
$regex.ismatch($days)

False

TIP PowerShell also provides operators for splitting, joining, and formatting strings.

These operators are discussed in the “Working with Strings” section later in this

 chapter.

Another comparison operator you can use is –replace. You use this operator to
replace all occurrences of a value in a specifi ed element. In the following example,
you replace all occurrences of “host” in $a with "console":

$a = "svchost", "iexplorer", "loghost"
$a –replace "host", "console"

svcconsole

iexplorer

logconsole

[regex]$regex="^([a-zA-Z]*)$"

$a ="Tuesday"
[regex]$regex="^([a-zA-Z]*)$"
$regex.ismatch($a)

True

$days ="Monday Tuesday"
[regex]$regex="^([a-zA-Z]*)$"
$regex.ismatch($days)

False

$a = "svchost", "iexplorer", "loghost"
$a –replace "host", "console"

svcconsole

iexplorer

logconsole

 Navigating Core Windows PowerShell Structures CHAPTER 5 121

Other Operators

Windows PowerShell includes several other types of operators, including logical and
type operators. Table 5-7 provides an overview of these additional operators.

TABLE 5-7 Logical and Type Operators in Windows PowerShell

OP OPERATION DESCRIPTION EXAMPLE

–and Logical AND True only when both state-
ments are True.

(5 –eq 5) –and (3 –eq 6)
False

–or Logical OR True only when either state-
ment or both statements are
True.

(5 –eq 5) –or (3 –eq 6)
True

–xor Logical XOR True only when one of the
statements is True and one is
False.

(5 –eq 5) –xor (3 –eq 6)
True

–not, ! Logical NOT Negates the statement that
follows it. True only when the
statement is False. False only
when the statement is True.

–not (5 –eq 5)
False

! (5 –eq 5)
False

–is Object
equality

Returns True only when the
input is an instance of a speci-
fied .NET Framework type.

(get-date) –is [datetime]
True

–isnot Object
inequality

Returns True only when the
input is not an instance of
a specified .NET Framework
type.

(get-date) –isnot
[datetime]
False

–as Object
conversion

Converts the input to the
specified .NET Framework
type.

“3/31/10” –as [datetime]
Wednesday, March 31,
2010 12:00:00 AM

, Array
constructor

Creates an array from the
comma-separated values.

$a = 1,2,4,6,4,2

.. Range
operator

Establishes a range of values. $a = 2..24

–band Binary AND Performs a binary AND. –

–bor Binary OR Performs a binary OR. –

–bnot Binary NOT Performs a binary
 complement.

–

–bxor Binary XOR Performs a binary exclusive OR. –

 CHAPTER 5 Navigating Core Windows PowerShell Structures122

One operator you should learn about is the special operator Is. You use Is to
compare objects according to their .NET Framework type. If the objects are of the
same type, the result of the comparison is True. If the objects are not of the same
type, the result of the comparison is False.

Table 5-8 shows the expanded precedence order for all available operators. This
precedence order takes into account all the possible combinations of operators and
defines an order of evaluation.

TABLE 5-8 Extended Operator Precedence in Windows PowerShell

ORDER OPERATION

1 Grouping () { }

2 Command expansion @ $

3 Not !

4 Wildcard expansion []

5 Dot sourcing .

6 Invoke &

7 Increment ++, Decrement --

8 Unary + –

9 Multiplication *, Division /

10 Remainders %

11 Addition +, Subtraction –

12 Comparison operators

13 –and, –or

14 Pipelining |

15 Redirection > >>

16 Assignment =

Working with Variables and Values

Variables are placeholders for values. A value can be a string, a number, or an ob-
ject. You can access this information later simply by referencing the variable name.
With variables that store objects (from the output of commands), you can pass the
stored information down the pipeline to other commands as if it were the output of
the original command.

 Navigating Core Windows PowerShell Structures CHAPTER 5 123

 Your scripts and command text can use any of the available variables. By default,
variables you create exist only in the current session and are lost when you exit or
close the session. To maintain your variables, you must store them in a profi le. For
detailed information on profi les, see Chapter 3, “Managing Your PowerShell Envi-
ronment.”

 In scripts, if confi guration information doesn’t need to be hard-coded, you
should consider using variables to represent the information because this makes
scripts easier to update and maintain. Additionally, you should try to defi ne your
variables in one place at the beginning of a script to make it easier to fi nd and
maintain variables.

 PowerShell supports four classes of variables: automatic, preference, environ-
ment, and user-created variables. Unlike the command line, where variable values
are stored as text strings, PowerShell stores values as either text strings or objects.
Technically, a string is a type of object as well, and you’ll learn more about strings in
“Working with Strings” later in this chapter.

Variable Essentials

 The following cmdlets are available for working with variables:

 Get-Variable Lists all or specifi ed variables set in the current session by
name and value.

Get-Variable [[-Name] VarNames] [AddtlParams]

AddtlParams=
[-Scope String] [-Exclude Strings] [-Include Strings] [-ValueOnly]

 New-Variable Creates a new variable.

New-Variable [[-Value] Object] [-Name] VarName [AddtlParams]

AddtlParams=
[-Description String] [-Force] [-Option None | ReadOnly | Constant
| Private | AllScope] [-PassThru] [-Scope String] [-Visibility
Public | Private]

 Set-Variable Creates a new variable or changes the defi nition of an exist-
ing variable.

Set-Variable [[-Value] Object] [-Name] VarNames [AddtlParams]

AddtlParams=
[-Description String] [-Exclude Strings] [-Force] [-Include
Strings] [-Option None | ReadOnly | Constant | Private | AllScope]
[-PassThru] [-Scope String] [-Visibility Public | Private]

Get-Variable [[-Name] VarNames] [AddtlParams]

AddtlParams=
[-Scope String] [-Exclude Strings] [-Include Strings] [-ValueOnly]

New-Variable [[-Value] Object] [-Name] VarName [AddtlParams]

AddtlParams=
[-Description String] [-Force] [-Option None | ReadOnly | Constant
| Private | AllScope] [-PassThru] [-Scope String] [-Visibility
Public | Private]

Set-Variable [[-Value] Object] [-Name] VarNames [AddtlParams]

AddtlParams=
[-Description String] [-Exclude Strings] [-Force] [-Include
Strings] [-Option None | ReadOnly | Constant | Private | AllScope]
[-PassThru] [-Scope String] [-Visibility Public | Private]

CHAPTER 5 Navigating Core Windows PowerShell Structures124

 Remove-Variable Removes a variable and its value. Use the –Force param-
eter to remove a read-only variable.

Remove-Variable [-Name] VarNames[AddtlParams]

AddtlParams=
[-Scope String] [-Force] [-Exclude Strings] [-Include Strings]

 Clear-Variable Deletes the value of a variable. The value of the variable is
then set to NULL.

Clear-Variable [-Force] [-PassThru] [-Scope String] [-Exclude
Strings] [-Include Strings] [-Name] VarNames

Regardless of the class of variable you are working with, you reference variables
by preceding the variable name with a dollar sign ($). This is true whether you are
defi ning a new variable or trying to work with a value stored in an existing variable.
The dollar sign helps distinguish variables from aliases, functions, cmdlets, and other
elements you use with PowerShell. Table 5-9 provides an overview of the options for
defi ning variables.

TABLE 5-9 Windows PowerShell Variable Syntaxes

SYNTAX DESCRIPTION

$myVar = “Value” Defi nes a variable with a standard name, which is
prefi xed by $ and can contain the alphanumeric
characters (a to z, A to Z, and 0–9) and the under-
score (_). Variable names are not case sensitive.

${my.var!!!!} = “Value” Defi nes a variable with a nonstandard name, which
is prefi xed by $, is enclosed in curly braces, and
can contain any character. If curly braces are part
of the name, you must prevent substitution using
the back apostrophe (`).

[type] $myVar = “Value” Defi nes a strongly typed variable that ensures the
variable can contain only data of the specifi ed
type. PowerShell throws an error if it cannot coerce
the data into the declared type.

$SCOPE:$myVar = “Value” Declares a variable with a specifi c scope. Scopes
set the logical boundaries for variables. For more
information, see “Managing Variable Scopes” later
in the chapter.

New-Item Variable:\myVar
 –Value Value

Creates a new variable using the variable provider.
For more on providers, see the “Using Providers”
section in Chapter 3.

Remove-Variable [-Name] VarNames[AddtlParams]

AddtlParams=
[-Scope String] [-Force] [-Exclude Strings] [-Include Strings]

Clear-Variable [-Force] [-PassThru] [-Scope String] [-Exclude
Strings] [-Include Strings] [-Name] VarNames

 Navigating Core Windows PowerShell Structures CHAPTER 5 125

TABLE 5-9 Windows PowerShell Variable Syntaxes

 SYNTAX DESCRIPTION

 Get-Item Variable:\myVar
Get-Variable myVar

Gets a variable using the variable provider or the
Get-Variable cmdlet.

 ${path\fi lename.ext} Defi nes a variable using the Get-Content and
Set-Content syntax. If the path\fi lename.ext value
points to a valid path, you can get and set the
content of the item by reading and writing to the
variable.

 To defi ne a variable, you must assign the variable a name and a value using the
equals operator (=). Standard variable names are not case sensitive and can contain
any combination of alphanumeric characters (a to z, A to Z, and 0–9) and the under-
score (_) character. Following these rules, these are all valid and separate variables:

$myString = "String 1"
$myVar = "String 2"
$myObjects = "String 3"
$s = "String 4"

 To access the value stored in a variable, you simply reference the variable name.
For example, to display the contents of the $myString variable defi ned earlier, you
type $myString at the PowerShell prompt, and you get the following output:

String 1

 You can list available variables by typing get-variable at the PowerShell prompt.
The output includes variables you’ve defi ned as well as current automatic and pref-
erence variables. Because environment variables are accessed through the environ-
ment provider, you must reference $env: and then the name of the variable you
want to work with. For example, to display the value of the %UserName% variable,
you must enter $env:username.

 Variables can have nonstandard names that include special characters, such
as dashes, periods, colons, and parentheses, but you must enclose nonstandard
variable names in curly braces. Enclosing the variable name in curly braces forces
PowerShell to interpret the variable name literally. Following these rules, these are
all valid and separate variables:

${my.var} = "String 1"
${my-var} = "String 2"
${my:var} = "String 3"
${my(var)} = "String 4"

$myString = "String 1"
$myVar = "String 2"
$myObjects = "String 3"
$s = "String 4"

String 1

${my.var} = "String 1"
${my-var} = "String 2"
${my:var} = "String 3"
${my(var)} = "String 4"

CHAPTER 5 Navigating Core Windows PowerShell Structures126

To refer to a variable name that includes braces, you must enclose the variable
name in braces and use the back apostrophe character (`) to force PowerShell to
interpret the brace characters literally when used as part of the variable name. For
example, you can create a variable named “my{var}string” with a value of “String 5”
by typing

${my`{var`}string} = "String 5"

In previous examples, we assigned string values to variables, but you can just as
easily assign numeric, array, and object values. Numeric values are values entered
as numbers rather than strings. Arrays are data structures for storing collections of
like-typed data items. The values stored in an array can be delimited with a comma
or initialized using the range operator (..). A collection of objects can be obtained by
assigning the output of a cmdlet to a variable. Consider the following examples:

$myFirstNumber = 10
$mySecondNumber = 500
$myFirstArray = 0,1,2,3,4,8,13,21
$mySecondArray = 1..9
$myString = "Hello!"
$myObjectCollection1 = get-service
$myObjectCollection2 = get-process –name svchost

Here, you create variables to store integer values, arrays of values, strings, and
collections of objects. You can then work with the values stored in the variable just
as you would the original values. For example, you can count the number of service
objects stored in $myObjectCollection1 by typing the following:

$myObjectCollection1.Count

You even can sort the service objects by status and display the sorted output by
typing the following command:

$myObjectCollection1 | sort-object –property status

You aren’t limited to values of these data types. You can assign any .NET Frame-
work data type as a value, including the common data types listed in Table 5-10.

TABLE 5-10 Data Type Aliases

DATA TYPE ALIAS DATA TYPE

[adsi] An Active Directory Services Interface (ADSI) object

[array] An array of values

[bool] A Boolean value (True/False)

${my`{var`}string} = "String 5"

$myFirstNumber = 10
$mySecondNumber = 500
$myFirstArray = 0,1,2,3,4,8,13,21
$mySecondArray = 1..9
$myString = "Hello!"
$myObjectCollection1 = get-service
$myObjectCollection2 = get-process –name svchost

$myObjectCollection1.Count

$myObjectCollection1 | sort-object –property status

 Navigating Core Windows PowerShell Structures CHAPTER 5 127

 TABLE 5-10 Data Type Aliases

 DATA TYPE ALIAS DATA TYPE

 [byte] An 8-bit unsigned integer in the range 0 to 255

 [char] A Unicode 16-bit character

 [datetime] A datetime value

 [decimal] A 128-bit decimal value

 [double] A double-precision, 64-bit fl oating-point number

 [fl oat] A single-precision, 32-bit fl oating-point number

 [hashtable] An associative array defi ned in a hashtable object

 [int] A 32-bit signed integer

 [long] A 64-bit signed integer

 [psobject] A common object type that can encapsulate any base object

 [regex] A regular expression

 [scriptblock] A series of commands

 [single] A single-precision, 32-bit fl oating-point number

 [string] A fi xed-length string value with Unicode characters

 [wmi] A Windows Management Instrumentation (WMI) object

 [xml] An XML object

 Variables also can be used to store the results of evaluated expressions. Consider
the following example and result:

$theFirstResult = 10 + 10 + 10
$theSecondResult = $(if($theFirstResult –gt 25) {$true} else {$false})
write-host "$theFirstResult is greater than 25? `t $theSecondResult"

30 is greater than 25? True

 Here, Windows PowerShell evaluates the fi rst expression and stores the result in
the fi rst variable. Next PowerShell evaluates the second expression and stores the
result in the second variable. The expression determines whether the fi rst variable
is greater than 25. If it is, PowerShell sets the second variable to True. Otherwise,
PowerShell sets the second variable to False. Finally, PowerShell displays output to
the console containing the results.

 In these examples, the fi rst variable is defi ned as the Integer data type, and the
second is defi ned as the Boolean data type. Generally, if you use whole numbers
(such as 3 or 5) with a variable, PowerShell creates the variable as an Integer.

$theFirstResult = 10 + 10 + 10
$theSecondResult = $(if($theFirstResult –gt 25) {$true} else {$false})
write-host "$theFirstResult is greater than 25? `t $theSecondResult"

30 is greater than 25? True

 CHAPTER 5 Navigating Core Windows PowerShell Structures128

 Variables with values that use decimal points, such as 6.87 or 3.2, are generally
 assigned as Doubles—that is, double-precision, floating-point values. Variables
with values entered with a mixture of alphabetical and numeric characters, such as
Hello or S35, are created as Strings.

In PowerShell, you use Boolean values quite frequently. Whenever PowerShell
evaluates variables as part of a Boolean expression, such as in an If statement,
PowerShell maps the result to a Boolean representation. A Boolean value is always
either Tue or False, and it can be represented literally using the values $true for True
or $false for False.

Table 5-11 shows examples of items and results and how they are represented as
Booleans by PowerShell. Note that a reference to any object is represented as True
whereas a reference to $null is represented as False.

TABLE 5-11 Results Represented as Boolean Values

ITEM OR RESULT BOOLEAN REPRESENTATION

$true True

$false False

$null False

Object reference True

Nonzero number True

Zero False

Nonempty string True

Empty string False

Nonempty array True

Empty array False

Empty associative array True

Nonempty associative array True

Assigning and Converting Data Types

You can directly assign values without declaring the data type because PowerShell
has the built-in capability to automatically determine the data type. If you ever have
a question about a variable’s data type, you can display the data type using the fol-
lowing syntax:

VariableName.GetType()

where VariableName is the actual name of the variable as shown in the following
example and sample output:

 Navigating Core Windows PowerShell Structures CHAPTER 5 129

$myFirstNumber.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

 Note that the base type is listed as System.ValueType, and the name is listed as
Int32. Based on this output, you know the base type for the variable is a valid type
in the System namespace and that the specifi c value type is Int32, meaning a 32-bit
integer value.

 Although the easiest way to declare a variable type is to use an alias, you also
can declare variable types using the following:

 Fully qualifi ed class names, such as [System.Array], [System.String], or
 [System.Diagnostics.Service]

 Class names under the System namespace, such as [Array], [String], or
 [Diagnostics.Service]

 Be careful though: PowerShell throws an error if it cannot coerce the data into
the specifi ed data type. This is why you’ll typically want to allow PowerShell to
determine the data type for you. That way, you don’t have to worry about Power-
Shell throwing errors if data cannot be coerced into a specifi ed data type. However,
after the data type is set, PowerShell tries to coerce any subsequent values you add
to a variable to be of this type and throws an error if data types are mismatched.
Consider the following example:

$myNumber = 52
$myNumber += "William"

 Here, you create a variable and assign an integer value of 52. Next, you try to
add a string value to the existing value using the increment operator (+=). This
causes PowerShell to throw the following type mismatch error:

Cannot convert value "William" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:13
+ $myNumber += <<<< "William"
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

 This error occurs because PowerShell cannot automatically convert the string
value to a numeric value. However, in other cases, PowerShell silently converts value
types for you. Consider the following example:

$myNumber = "William"
$myNumber += 52

$myFirstNumber.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

$myNumber = 52
$myNumber += "William"

Cannot convert value "William" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:13
+ $myNumber += <<<< "William"
 + CategoryInfo : NotSpecified: (:) [], RuntimeException
 + FullyQualifiedErrorId : RuntimeException

$myNumber = "William"
$myNumber += 52

CHAPTER 5 Navigating Core Windows PowerShell Structures130

Here, you create a variable and assign a string value. Next, you try to add the
numeric value 52 to the existing string value using the increment operator (+=). This
causes PowerShell to silently convert a numeric value to a string, and the result is
that the value of $myNumber is then set to “William52”.

When you create variables, you can specify the value type using any of the data
type aliases listed previously in Table 5-1. These data type aliases are used in the
same way whenever you declare a data type in PowerShell.

In the following example, you declare the data type as a 32-bit integer, specify
the variable name as $myNumber, and assign a value of 10:

[int]$myNumber = 10

This creates a strongly typed variable and ensures that the variable can contain
only the data of the type you declare. PowerShell throws an error if it cannot coerce
the data to this type when you assign it. For more information about data types, see
the “Object Types” section in Chapter 6, “Mastering Aliases, Functions, and Objects.”

To explicitly assign a number as a long integer or decimal, you can use the suf-
fi xes L and D, respectively. Here are examples:

$myLongInt = 52432424L
$myDecimal = 2.2425D

Windows PowerShell also supports scientifi c notation. For example,

$mathPi = 3141592653e-9

sets the value for $mathPi as 3.141592653.

TIP In Windows PowerShell, you can reference the mathematical constants Pi

and E via the static properties of the [System.Math] class. [System.Math]::Pi equals

3.14159265358979. [System.Math]::E equals 2.71828182845905.

 You can enter hexadecimal numbers using the 0x prefi x, and PowerShell stores
the hexadecimal number as an integer. If you enter the following statement

$ErrorCode = 0xAEB4

PowerShell converts the hexadecimal value AEB4 and then stores that value as
44724.

PowerShell does not natively support other number bases. However, you can
use the [Convert] class in the .NET Framework to perform many types of data
conversions. The [Convert] class supports the static conversion methods shown in
Table 5-12.

[int]$myNumber = 10

$myLongInt = 52432424L
$myDecimal = 2.2425D

 Navigating Core Windows PowerShell Structures CHAPTER 5 131

 TABLE 5-12 Commonly Used Static Methods of the [Convert] Class

 STATIC METHOD DESCRIPTION

 ToBase64CharArray() Converts the value to a base64 character array

 ToBase64String() Converts the value to a base64 string

 ToBoolean() Converts the value to a Boolean

 ToByte() Converts the value to an 8-bit unsigned integer

 ToChar() Converts the value to a Unicode 16-bit char

 ToDateTime() Converts the value to a datetime value

 ToDecimal() Converts the value to a decimal value

 ToDouble() Converts the value to a double-precision, 64-bit
 fl oating-point number

 ToInt16() Converts the value to a 16-bit integer

 ToInt32() Converts the value to a 32-bit integer

 ToInt64() Converts the value to a 64-bit integer

 ToSByte() Converts the value to an 8-bit signed integer

 ToSingle() Converts the value to a single-precision, 32-bit fl oating-
point number

 ToString() Converts the value to a string

 ToUInt16() Converts the value to an unsigned 16-bit integer

 ToUInt32() Converts the value to an unsigned 32-bit integer

 ToUInt64() Converts the value to an unsigned 64-bit integer

 You can use the [Convert] class methods to convert to and from binary, octal,
decimal, and hexadecimal values. The following example converts the binary value
to a 32-bit integer:

$myBinary = [Convert]::ToInt32("1011111011110001", 2)

 The result is 48881. The following example converts an octal value to a 32-bit
integer:

$myOctal = [Convert]::ToInt32("7452", 8)

 The result is 3882. The following example converts a hexadecimal value to a 32-
bit integer:

$myHex = [Convert]::ToInt32("FEA07E", 16)

$myBinary = [Convert]::ToInt32("1011111011110001", 2)

$myOctal = [Convert]::ToInt32("7452", 8)

$myHex = [Convert]::ToInt32("FEA07E", 16)

CHAPTER 5 Navigating Core Windows PowerShell Structures132

The result is 16687230. You can just as easily convert an integer value to binary,
octal, or hexadecimal. The following example takes the value 16687230 and converts
it to a string containing a hexadecimal value:

$myString = [Convert]::ToString(16687230, 16)

The result is “FEA07E”.

Although PowerShell can convert between some variable types, you might
sometimes want to force PowerShell to use a variable value as a string rather than
another data type. To do this, you can use the ToString() method to convert a vari-
able value to a string. This works with Boolean, Byte, Char, and Datetime objects, as
well as any of the numeric data types. It does not work with most other data types.

To convert a value to a string, just pass the value to the ToString() method as
shown in this example and sample output:

$myNumber = 505
$myString = $myNumber.ToString()
$myString.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

In the [System.Datetime] and [System.Math] classes, you fi nd other useful static
methods and properties. Table 5-13 lists the class members you’ll use most often.

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes

 CLASS/MEMBERS DESCRIPTION SYNTAX

[Datetime]

Compare() Compares two date objects.
Returns 0 if they are equal and
–1 otherwise.

[Datetime]::Compare(d1,d2)

DaysInMonth() Returns the number of days in
a given year and month.

[Datetime]::DaysInMonth(year,
month)

Equals Determines if two date objects
are equal. Returns True if they
are equal.

[Datetime]::Equals(d1,d2)

IsLeapYear Returns True if the specifi ed
year is a leap year.

[Datetime]::IsLeapYear(year)

Now Returns the current date and
time.

[Datetime]::Now

$myString = [Convert]::ToString(16687230, 16)

$myNumber = 505
$myString = $myNumber.ToString()
$myString.GetType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 Navigating Core Windows PowerShell Structures CHAPTER 5 133

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes

CLASS/MEMBERS DESCRIPTION SYNTAX

Today Returns the current date as of
12:00 A.M.

[Datetime]::Today

[MATH]

Abs() Returns the absolute value. [Math]::Abs(value1)

Acos() Returns the arccosine of the
value.

[Math]::Acos(value1)

Asin() Returns the arcsine of the
value.

[Math]::Asin(value1)

Atan() Returns the arctangent of the
value.

[Math]::Atan(value1)

Atan2() Returns the inverse arccosine
of the value.

[Math]::Atan2(value1)

BigMul() Returns the multiple as a 64-
bit integer.

[Math]::BigMul(val1,val2)

Ceiling() Returns the mathematical ceil-
ing of the value.

[Math]::Ceiling(val1)

Cos() Returns the cosine of the
value.

[Math]::Cos(val1)

Cosh() Returns the inverse cosine of
the value.

[Math]::Cosh(val1)

DivRem() Returns the dividend remain-
der for value1 / value2.

[Math]::DivRem(val1,val2)

Equals() Evaluates whether object1
equals object2.

[Math]::Equals(obj1,obj2)

Exp() Returns the exponent. [Math]::Exp(value1)

Floor() Returns the mathematical
floor of the value.

[Math]::Floor(val1)

Log() Returns the Log of the value. [Math]::Log(value1)

Log10() Returns the Log10 of the
value.

[Math]::Log10(value1)

Max() Returns the larger of two
values.

[Math]::Max(val1,val2)

 CHAPTER 5 Navigating Core Windows PowerShell Structures134

TABLE 5-13 Commonly Used Static Members of the [DateTime] and [Math] Classes

CLASS/MEMBERS DESCRIPTION SYNTAX

Min() Returns the smaller of two
values.

[Math]::Min(val1,val2)

Pow() Returns the value to the power
of the exponent.

[Math]::Pow(val1,val2)

Round() Returns the rounded value. [Math]::Round(val1)

Sign() Returns a signed 16-bit inte-
ger value.

[Math]::Sign(val1)

Sin() Returns the sine of the value. [Math]::Sin(value1)

Sinh() Returns the inverse sine of the
value.

[Math]::Sinh(value1)

Sqrt() Returns the square root of the
value.

[Math]::Sqrt(value1)

Tan() Returns the tangent of the
value.

[Math]::Tan(value1)

Tanh() Returns the inverse tangent of
the value.

[Math]::Tanh(value1)

Truncate() Truncates the decimal value. [Math]::Truncate(value1)

E Returns the mathematical
constant E.

[Math]::E

Pi Returns the mathematical
constant Pi.

[Math]::Pi

Table 5-14 provides an overview of the instance methods and properties of
the String object. You’ll use the String object often when working with values in
 PowerShell.

TABLE 5-14 Commonly Used Instance Methods and Properties of String Objects

INSTANCE MEMBER DESCRIPTION EXAMPLE

Length Returns the character length
of the string.

$s.Length

Contains() Returns True if string2 is
contained within string1.

$s.Contains(“string2”)

EndsWith() Returns True if string1 ends
with string2.

$s.EndsWith(“string2”)

 Navigating Core Windows PowerShell Structures CHAPTER 5 135

TABLE 5-14 Commonly Used Instance Methods and Properties of String Objects

INSTANCE MEMBER DESCRIPTION EXAMPLE

Insert() Inserts string2 into string1
at the specified character
position.

$s.Insert(0,“string2”)

$s.Insert($s.Length,“string2”)

Remove() Removes characters from
string1 based on a start-
ing position and length. If
no length is provided, all
characters after the starting
position are removed.

$s.Remove(5,3)

$s.Remove(5)

Replace() Replaces occurrences of
substr1 in the string with the
substr2 value.

$s.Replace(“this”,”that”)

StartsWith() Returns True if string1 starts
with string2.

$s.StartsWith(“string2”)

SubString() Gets a substring from
string1 based on a start-
ing position and length. If
no length is provided, all
characters after the starting
position are returned.

$s.Substring(3,5)

$s.Substring(3)

ToLower() Converts the string to lower-
case letters.

$s.ToLower()

ToString() Converts an object to a
string.

$s.ToString()

ToUpper() Converts the string to up-
percase letters.

$s.ToUpper()

Managing Variable Scopes

The scope of a variable determines its logical boundaries. You can set variable scope
as global, local, script, or private. The scopes exist in a logical hierarchy in which
scope information is accessible downward in this order:

global > script/local > private

Following this, you can see that the local and script scopes can read information
from the global scope, but the global scope cannot read a local or script scope.
Further, private scopes can read information from higher-level scopes, but other
scopes cannot read the contents of a private scope.

CHAPTER 5 Navigating Core Windows PowerShell Structures136

REAL WORLD Scope applies to aliases, functions, and PowerShell drives as well as

to variables. You can think of the global scope as the parent or root scope and script/

local scripts as child scopes of the global scope. Child scopes can always read informa-

tion from parent scopes. Technically speaking, variables, aliases, and functions in a

parent scope are not part of the child scope. A child scope does not inherit the vari-

ables, aliases, or functions from the parent scope. However, a child scope can view the

variables, aliases, or functions from the parent scope, and it can change these items in

the parent scope by explicitly specifying the parent scope.

The default scope for a script is a script scope that exists only for that script. The

 default scope for a function is a local scope that exists only for that function, even if

the function is defi ned in a script.

Regardless of whether you are working with variables, aliases, functions, or PowerShell

drives, scopes work the same. An item you include in a scope is visible in the scope

in which it was created and any child scopes, unless you explicitly make it private.

An item in a particular scope can be changed only in that scope, unless you explicitly

specify a different scope. If you create an item in a child scope and that item already

exists in another scope, the original item is not accessible in the child scope, but it is

not overridden or changed in the original (parent) scope.

You can create a new scope by running a script or function, by defi ning a script
block, by creating a local or remote session, or by starting a new instance of Power-
Shell. When you create a new scope through a script, function, script block, or nest-
ing of instances, the scope is a child scope of the original (parent) scope. However,
when you create a new session, the session is not a child scope of the original scope.
The session starts with its own global scope, and that global scope is independent
from the original scope.

You can explicitly or implicitly set the scope of a variable. You explicitly set scope
by adding the Global, Local, Script, or Private keyword prefi x to the variable name.
The following example creates a global variable:

$Global:myVar = 55

You implicitly set scope whenever you defi ne a variable at the prompt, in a script,
or in a function. A variable with an implicit scope resides in the scope in which it is
defi ned.

The default scope is the current scope and is determined as follows:

 Global when defi ned interactively at the PowerShell prompt

 Script when defi ned outside functions or script blocks in a script

 Local within functions, script blocks, or anywhere else

 The global scope applies to an entire PowerShell instance. Because data defi ned
in the global scope is inherited by all child scopes, this means any commands, func-
tions, or scripts that you run can make use of variables defi ned in the global scope.

Global scopes are not shared across instances of PowerShell. With regard to
the PowerShell console, this means the variables you defi ne in one console are not

$Global:myVar = 55

 Navigating Core Windows PowerShell Structures CHAPTER 5 137

available in another console (unless you defi ne them in that console session). With
regard to the PowerShell application, this means variables you defi ne in one tab are
not available in another tab (unless you defi ne them in that tab session).

 Local scopes are created automatically each time a function, script, or fi lter runs.
A local scope can read information from the global scope, but it can make changes
to global information only by explicitly declaring the scope. After a function, script,
or fi lter has fi nished running, the information in the related local scope is discarded.

 To learn more about scopes, consider the following example and sample output:

function numservices {$serv = get-service}
numservices
write-host "The number of services is: `t" $serv.count

The number of services is:

 Here, $serv is created as a variable inside the numservices function. As a result,
when you run the function, a local variable instance is created. When you then try
to access the $s variable in the global scope, the variable has no value. In contrast, if
you explicitly declare the variable as global, you can access the variable in the global
scope as shown in the following example and sample output:

function numservices {$Global:serv = get-service}
numservices
write-host "The number of services is: `t" $serv.count

The number of services is: 157

 Script scopes are created whenever a script runs. Only commands in a script run
in the script scope; to these commands, the script scope is the local scope. As func-
tions in a script run in their own local scope, any variables set in a script function are
not accessible to the script itself. To remedy this, you can set the scope of variables
defi ned in a script function explicitly as shown in this example:

function numservices {$Script:serv1 = get-service}
numservices
write-host "The number of services is: `t" $serv1.count

 Normally, when a function or script fi nishes running, the related scope and all
related information is discarded. However, you can use dot sourcing to tell Power-
Shell to load a function’s or script’s scope into the calling parent’s scope rather
than creating a new local scope for the function or script. To do this, simply prefi x
the function or script name with a period (.) when running the function or script, as
shown in this example:

. c:\scripts\runtasks.ps1

function numservices {$serv = get-service}
numservices
write-host "The number of services is: `t" $serv.count

The number of services is:

function numservices {$Global:serv = get-service}
numservices
write-host "The number of services is: `t" $serv.count

The number of services is: 157

function numservices {$Script:serv1 = get-service}
numservices
write-host "The number of services is: `t" $serv1.count

. c:\scripts\runtasks.ps1

CHAPTER 5 Navigating Core Windows PowerShell Structures138

The fi nal scope type you can use is the private scope. You must create privately
scoped items explicitly. Because any information in a private scope is not available
to any other scopes, including child scopes, a privately scoped variable is available
only in the scope in which it is created. The following example and sample output
shows this:

function numservices {$Private:serv = get-service

write-host "The number of services is: `t" $serv.count

 &{write-host "Again, the number of services is: `t" $serv.count}

}
numservices

The number of services is: 157

Again, the number of services is:

Here, you create a function with a private variable and then defi ne a script block
within the function. Within the function, you have access to the private variable, and
this is why you can write the number of services when you call the function. Because
the script block automatically runs in its own local scope, you cannot access the pri-
vate variable in the script block. This is why you cannot write the number of services
from within the script block when you call the function.

Automatic, Preference, and Environment Variables

 In addition to user-created variables, PowerShell supports automatic, preference,
and environment variables. Automatic variables are fi xed and used to store state
information. Preference variables are changeable and used to store working values
for PowerShell confi guration settings. Environment variables store the working
environment for the current user and the operating system.

 Table 5-15 lists the common automatic variables in PowerShell. You’ll use many
of these variables when you are working with PowerShell, especially $_, $Args,
$Error, $Input, and $MyInvocation.

 TABLE 5-15 Common Automatic Variables in Windows PowerShell

 AUTOMATIC VARIABLE DESCRIPTION

 $$ Stores the last token in the last line received by the
 PowerShell session.

 $? Stores the execution status of the last operation as TRUE
if the last operation succeeded or as FALSE if it failed.

 $^ Stores the fi rst token in the last line received by the session.

function numservices {$Private:serv = get-service

write-host "The number of services is: `t" $serv.count

 &{write-host "Again, the number of services is: `t" $serv.count}

}
numservices

The number of services is: 157

Again, the number of services is:

 Navigating Core Windows PowerShell Structures CHAPTER 5 139

TABLE 5-15 Common Automatic Variables in Windows PowerShell

AUTOMATIC VARIABLE DESCRIPTION

$_ Stores the current object in the pipeline object set. Use
this variable in commands that perform an action on every
object or on selected objects in a pipeline.

$Args Stores an array of the undeclared parameters, parameter
values, or both that are passed to a function, script, or
script block.

$ConsoleFileName Stores the path of the console file (.psc1) that was most
recently used in the session.

$Error Stores an array of error objects that represent the most
recent errors. $Error[0] references the most recent error in
the array.

$ExecutionContext Stores an EngineIntrinsics object that represents the
 execution context of the Windows PowerShell host.

$False Stores FALSE. It can be used instead of the string “false”.

$ForEach Stores the enumerator of a ForEach-Object loop.

$Home Stores the full path of the user’s home directory.

$Host Stores an object that represents the current host
 application.

$Input Stores the input that is passed to a function or script block.
The $Input variable is case sensitive. When the Process
block is completed, the value of $Input is NULL. If the
function does not have a Process block, the value of
$Input is available to the End block, and it stores all the
input to the function.

$LastExitCode Stores the exit code of the last Windows-based program
that was run.

$Matches Stores a hash table of any string values that were matched
when you use the –Match operator.

$MyInvocation Stores an object with information about the current
 command, including the run path and file name for scripts.

$NestedPromptLevel Stores the current prompt level. A value of 0 (zero) indi-
cates the original prompt level. The value is incremented
when you enter a nested level and decremented when you
exit nested levels.

CHAPTER 5 Navigating Core Windows PowerShell Structures140

 TABLE 5-15 Common Automatic Variables in Windows PowerShell

AUTOMATIC VARIABLE DESCRIPTION

 $NULL Stores a NULL or empty value. It can be used instead of
the string “NULL”.

 $PID Stores the process identifi er (PID) of the process that is
hosting the current Windows PowerShell session.

 $Profi le Stores the full path of the Windows PowerShell profi le for
the current user and the current host application.

 $PSBoundParameters Stores a hash table of the active parameters and their
 current values.

 $PsCulture Stores the name of the culture setting currently in use in
the operating system.

 $PSDebugContext Stores information about the debugging environment (if
applicable). Otherwise, it stores a NULL value.

 $PsHome Stores the full path of the installation directory for
 Windows PowerShell.

 $PsUICulture Stores the name of the user interface (UI) culture that is
currently in use in the operating system.

 $PsVersionTable Stores a read-only hash table with the following items:
PSVersion (the Windows PowerShell version number),
BuildVersion (the build number of the current version),
 CLRVersion (the version of the common language
 runtime), and PSCompatibleVersions (versions of Windows
PowerShell that are compatible with the current version).

 $Pwd Stores a path object representing the full path of the current
working directory.

 $ShellID Stores the identifi er of the current shell.

 $This Defi nes a script property or script method within a script
block. Refers to the object that is being extended.

 $True Stores TRUE. It can be used instead of the string “true”.

You use $_ with the Where-Object cmdlet to perform an action on every object
or on selected objects in a pipeline. The basic syntax is

where-object {$_.PropertyName –ComparisonOp "Value"}where-object {$_.PropertyName –ComparisonOp "p Value"}

 Navigating Core Windows PowerShell Structures CHAPTER 5 141

 where PropertyName is the name of the object property to examine, –ComparisonOp
specifi es the type of comparison to perform, and Value sets the value to compare—
for example:

get-process | where-object {$_.Name –match "svchost"}

 Here, you use $_ to examine the Name property of each object passed in the
pipeline. If the Name property is set to “svchost”, you pass the related object along
the pipeline.

 You can extend this example using a regular expression, such as:

get-process | where-object {$_.Name –match "^s.*"}

 Here, you examine the Name property of each object passed in the pipeline. If
the Name property begins with the letter S, you pass the related object along the
pipeline. You can just as easily use any other comparison operator listed previously
in Table 5-4, such as –eq, –ne, –gt, –lt, –le, –ge, –contains, –notcontains, –like, or
–notlike.

 Another useful automatic variable is $Error. You use $Error to list all error objects
for the current session and $Error[0] to access the most recent error object. Simply
type $Error or $Error[0]. Because errors are represented in objects, you can format
the properties of error objects as you would any other output, such as

$error[0] | format-list -property * -force

 Error objects have the following properties:

 CategoryInfo Indicates the category under which an error is classifi ed,
such as InvalidArgument or PSArgumentException

 Exception Provides detailed information about the error that occurred

 FullyQualifi edErrorId Identifi es the exact error that occurred, such as
Argument

 InvocationInfo Provides detailed information about the command that
caused an error

 PipelineIterationInfo Provides detailed information about the pipeline
iteration

 PSMessageDetails Provides PowerShell message details, if applicable

 TargetObject Indicates the object being operated on

 You can access any of these properties via a specifi ed error object. To list de-
tailed information about the command that caused the last error, you can use the
InvocationInfo property as shown in the following example and sample output:

$currError = $error[0]
$currError.InvocationInfo

get-process | where-object {$_.Name –match "svchost"}

get-process | where-object {$_.Name –match "^s.*"}

$error[0] | format-list -property * -force

$currError = $error[0]
$currError.InvocationInfo

CHAPTER 5 Navigating Core Windows PowerShell Structures142

MyCommand : Sort-Object

BoundParameters : {}

UnboundArguments : {}

ScriptLineNumber : 1

OffsetInLine : 25

ScriptName :

Line : $p | sort-object -status

PositionMessage :

 At line:1 char:25

 + $p | sort-object -status <<<<

InvocationName : sort-object

PipelineLength : 0

PipelinePosition : 0

ExpectingInput : False

CommandOrigin : Internal

You can clear all the errors in the current sessions by entering the following
 command:

$error.clear()

Another handy automatic variable is $Args. You can access command-line
 arguments using the array stored in this variable—for example:

$argCount = $args.Count
$firstArg = $args[0]
$secondArg = $args[1]
$lastArg = $args[$args.Count -1]

Here, you determine the number of arguments passed in the command line
using $args.Count. You get the fi rst argument using $args[0], the second argument
using $args[1], and the last argument using $args[$args.Count -1].

Data being passed to a function or script block via the pipeline is stored in the
$Input variable. This variable is a .NET Framework enumerator. With enumerators,
you can access the input stream but not an arbitrary element as you can with an
array. After you process the input stream, you must call the Reset() method on the
$Input enumerator before you can process the elements again. One way to access
the input stream is in a For Each loop, such as

foreach($element in $input) { "The input was: `t $element" }

Or you can store the input element in an array, such as

$iArray = @($input)

MyCommand : Sort-Object

BoundParameters : {}

UnboundArguments : {}

ScriptLineNumber : 1

OffsetInLine : 25

ScriptName :

Line : $p | sort-object -status

PositionMessage :

 At line:1 char:25

 + $p | sort-object -status <<<<

InvocationName : sort-object

PipelineLength : 0

PipelinePosition : 0

ExpectingInput : False

CommandOrigin : Internal

$error.clear()

$argCount = $args.Count
$firstArg = $args[0]
$secondArg = $args[1]
$lastArg = $args[$args.Count -1]

foreach($element in $input) { "The input was: `t $element" }

$iArray = @($input)

 Navigating Core Windows PowerShell Structures CHAPTER 5 143

You can access information about the context under which you are running a
script using $MyInvocation. In a script, you can access detailed information about
the current command through $MyInvocation.MyCommand. To access the path
and file name of the script, use $MyInvocation.MyCommand.Path. Use $MyInvoca-
tion.MyCommand.Name to identify the name of a function. Use $MyInvocation.
ScriptName to display the name of the script.

Table 5-16 provides a summary of the common preference variables. As you use
these variables to customize how PowerShell works, you should familiarize yourself
with them. Some of these variables were discussed previously in the “Writing to Out-
put Streams” section in Chapter 2, “Getting the Most from Windows PowerShell.”

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE DESCRIPTION DEFAULT

$ConfirmPreference Controls whether cmdlet actions request
confirmation from the user before they are
performed. Acceptable values are High
(actions with a high risk are confirmed),
Medium (actions with a medium or high
risk are confirmed), Low (actions with a
low, medium, or high risk are confirmed),
or None (no actions are confirmed;
use the –Confirm parameter to request
 confirmation).

High

$DebugPreference Controls how PowerShell responds to
debugging messages.

Silently
Continue

$ErrorAction
Preference

Controls how PowerShell responds to
an error that does not stop the cmdlet
processing.

Continue

$ErrorView Controls the display format of error mes-
sages in PowerShell. Acceptable values are
NormalView (the detailed normal view) or
CategoryView (a streamlined view).

Normal
View

$FormatEnumeration-
Limit

Controls how many enumerated items are
included in a grouped display. Acceptable
values are Integers.

4

$LogCommand
HealthEvent

Controls whether errors and exceptions
in command initialization and processing
are written to the PowerShell event log.
Acceptable values are $true (logged) or
$false (not logged).

$false

 CHAPTER 5 Navigating Core Windows PowerShell Structures144

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE DESCRIPTION DEFAULT

$LogCommand
LifecycleEvent

Controls whether PowerShell logs the
starting and stopping of commands and
command pipelines and security excep-
tions in command discovery. Acceptable
values are $true (logged) or $false (not
logged).

$false

$LogEngine
HealthEvent

Controls whether PowerShell logs errors
and failures of sessions. Acceptable values
are $true (logged) or $false (not logged).

$true

$LogEngine
LifecycleEvent

Controls whether PowerShell logs the
opening and closing of sessions. Accept-
able values are $true (logged) or $false
(not logged).

$true

$LogProvider
HealthEvent

Controls whether PowerShell logs provider
errors, such as read and write errors,
lookup errors, and invocation errors.
Acceptable values are $true (logged) or
$false (not logged).

$true

$LogProvider
LifecycleEvent

Controls whether PowerShell logs adding
and removing of PowerShell providers.
Acceptable values are $true (logged) or
$false (not logged).

$true

$MaximumAlias
Count

Specifies how many aliases are permitted
in a PowerShell session. Valid values are
1024–32768. Count aliases using (get-
alias).count.

4096

$MaximumDrive
Count

Specifies how many PowerShell drives are
permitted in a session. This includes file
system drives and data stores that are ex-
posed by providers and appear as drives.
Valid values are 1024–32768. Count drives
using (get-psdrive).count.

4096

$MaximumError
Count

Specifies how many errors are saved in the
error history for the session. Valid values
are 256–32768. Objects that represent
each retained error are stored in the $Error
automatic variable. Count errors using
$Error.count.

256

 Navigating Core Windows PowerShell Structures CHAPTER 5 145

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE DESCRIPTION DEFAULT

$MaximumFunction
Count

Specifies how many functions are permit-
ted in a given session. Valid values are
1024–32768. Count functions using (get-
childitem function:).count.

4096

$MaximumHistory
Count

Specifies how many commands are saved
in the command history for the current
session. Valid values are 1–32768. Count
commands saved using (get-history).count.

64

$MaximumVariable
Count

Specifies how many variables are permit-
ted in a given session, including auto-
matic variables, preference variables, and
user-created variables. Valid values are
1024–32768. Count variables using (get-
variable).count.

4096

$OFS Sets the Output Field Separator. This
determines the character that separates
the elements of an array when the array is
converted to a string. Valid values are Any

string, such as “+” instead of “ “.

“ “

$OutputEncoding Sets the character encoding method
used by PowerShell when it sends text to
other applications. Valid values are ASCII-

Encoding, SBCSCodePageEncoding,
UTF7Encoding, UTF8Encoding,
UTF32Encoding, and UnicodeEncoding.

ASCII
Encoding

$ProgressPreference Specifies how PowerShell responds to
progress updates generated by Write-
Progress. Valid values are Stop (displays
an error and stops executing), Inquire
(prompts for permission to continue),
Continue (displays the progress bar and
continues), and SilentlyContinue (ex-
ecutes the command but does not display
the progress bar).

Continue

$PSMaximumReceived
ObjectSizeMB

Limits the size of any single object that a
command returns. Apply only to com-
mands that use PowerShell remoting.

10 MB for
remote, no
limit local

CHAPTER 5 Navigating Core Windows PowerShell Structures146

TABLE 5-16 Common Preference Variables in Windows PowerShell

PREFERENCE VARIABLE DESCRIPTION DEFAULT

$PSMaximumReceived
DataSizePer-
CommandMB

Limits the size of the data set that any
single command returns. Apply only to
commands that use PowerShell remoting.

50 MB for
remote, no
limit local

$PSSessionApplication
Name

Specifi es the default application that is
used when you identify a remote compu-
ter by an HTTP endpoint. Internet Infor-
mation Services (IIS) forwards requests to
WSMAN by default.

WSMAN

$PSSession
Confi gurationName

Specifi es the default session confi guration
for remote sessions. The value must be a
name that appears in the WinRM custom
remote session table and that is associated
with the executable fi le that runs the ses-
sion and a URI for the session resource.

Microsoft.
PowerShell

$VerbosePreference Controls how PowerShell responds to
verbose messages.

Silently
Continue

$WarningPreference Controls how PowerShell responds to
warning messages.

Continue

$WhatIfPreference Specifi es whether the –WhatIf parameter is
automatically enabled for every command
that supports it. When –WhatIf is enabled,
the cmdlet reports the expected effect of
the command, but it does not execute the
command. Valid values are 0 (disabled)
and 1 (enabled).

0

$WsmanMax
RedirectionCount

Controls how many times PowerShell
redirects a connection to an alternate URI
before the connection fails. A value of 0
prevents redirection.

5

You can view the value of automatic and preference variables simply by typing
their name at the PowerShell prompt. For example, to see the current value of the
$pshome variable, type $pshome at the PowerShell prompt. Although you cannot
change the value of automatic variables, you can change the value of preference
variables. To do so, you use the basic assignment syntax as with user-created vari-
ables. For example, if you want to set $WarningPreference to SilentlyContinue, you
can do this by typing the following command:

$warningpreference = "silentlycontinue"$warningpreference = "silentlycontinue"

 Navigating Core Windows PowerShell Structures CHAPTER 5 147

 With environment variables, you must work within the context of the environ-
ment provider. One way to do this is to reference the $env: provider drive and then
reference the name of the variable, such as

$env:logonserver

 You also can get or set the location with respect to the env: provider drive. For
example, if you set the location to the env: provider drive as shown in this example

set-location env:

 the PowerShell prompt changes to

PS Env:\>

 You can then work with any or all environment variables. To list all environment
variables you type the following command:

get-childitem

 To list a particular environment variable, you use Get-ChildItem and type the
variable name or part of the variable name with wildcards, such as

get-childitem userdomain
get-childitem user*

 When you are fi nished working with the environment provider, you can return to
the fi le system drive you were using by typing set-location and the drive designa-
tor, such as

set-location c:

 Another way to work with the environment provider is to use the Get-Item cmdlet
to examine its path values. If you do this, you don’t need to switch to the environ-
ment provider drive. For example, regardless of which provider drive you are working
with, you can type the following command to list all environment variables:

get-item -path env:*

 You also can get an environment variable by name:

get-item -path env:username

 Or you can get it by using a wildcard:

get-item -path env:user*

$env:logonserver

set-location env:

PS Env:\>

get-childitem

get-childitem userdomain
get-childitem user*

set-location c:

get-item -path env:*

get-item -path env:username

get-item -path env:user*

CHAPTER 5 Navigating Core Windows PowerShell Structures148

You can change environment variables using the Set-Item cmdlet. The basic
syntax is

set-item –path env:VariableName –value NewValue

where VariableName is the name of the environment variable you want to change,
and NewValue sets the desired value, such as

set-item –path env:homedrive –value D:

You also can change the value of an environment variable using simple assign-
ment, such as

$env:homedrive = D:

When you change environment variables using either technique, the change is
made only for the current session. To permanently change environment variables,
you can use the Setx command-line utility.

Working with Strings

Although we’ve used strings in some previous examples, we haven’t really talked
about what exactly a string is and isn’t. A string is a series of alphanumeric or non-
alphanumeric characters. PowerShell has several parsing rules for strings, and these
rules modify the way values are handled. You need a good understanding of how
strings are parsed to be successful with PowerShell, whether you enter commands at
the PowerShell prompt or use PowerShell scripts.

Single-Quoted and Double-Quoted Strings

You use quotation marks to denote the beginning and ending of literal string
expressions. You can enclose strings in single quotation marks (‘ ‘) or double quota-
tion marks (“ “). However, PowerShell parses values within single-quoted strings and
double-quoted strings differently.

When you enclose a string in single-quotation marks, the string is passed to the
command exactly as you type it. No substitution is performed. Consider the follow-
ing example and output:

$varA = 200
Write-Host 'The value of $varA is $varA.'

The output of this command is

The value $varA is $varA.

set-item –path env:VariableName –value NewValue

set-item –path env:homedrive –value D:

$env:homedrive = D:

$varA = 200
Write-Host 'The value of $varA is $varA.'

The value $varA is $varA.

 Navigating Core Windows PowerShell Structures CHAPTER 5 149

 Similarly, expressions in single-quoted strings are not evaluated. They are inter-
preted as literals—for example:

'The value of $(2+3) is 5.'

 The output of this command is

The value of $(2+3) is 5.

 When you enclose a string in double quotation marks, variable names that are
preceded by a dollar sign ($) are replaced with the variable’s value before the string
is passed to the command for processing. Consider the following example:

$varA = 200
Write-Host "The value of $varA is $varA."

 The output of this command is

The value 200 is 200.

 To prevent the substitution of a variable value in a double-quoted string, use the
back apostrophe character (`), which serves as the escape character as well as the
line-continuation character. Consider following example:

$varA = 200
Write-Host "The value of `$varA is $varA."

 Here, the back apostrophe character that precedes the fi rst variable reference
prevents Windows PowerShell from replacing the variable name with its value. This
means the output is

The value $varA is 200.

 Additionally, in a double-quoted string, expressions are evaluated, and the result
is inserted in the string. Consider the following example:

"The value of $(100+100) is 200."

 The output of this command is

The value of 200 is 200.

 You can make double quotation marks appear in a string by enclosing the entire
string in single quotation marks or by using double quotation marks, such as

'He said, "Hello, Bob"'

'The value of $(2+3) is 5.'

The value of $(2+3) is 5.

$varA = 200
Write-Host "The value of $varA is $varA."

The value 200 is 200.

$varA = 200
Write-Host "The value of `$varA is $varA."

The value $varA is 200.

"The value of $(100+100) is 200."

The value of 200 is 200.

'He said, "Hello, Bob"'

CHAPTER 5 Navigating Core Windows PowerShell Structures150

or

"He said, ""Hello, Bob"""

You can include a single quotation mark in a single-quoted string as well. Simply
use a second single quote, such as

'He won''t go to the store.'

Finally, you can use the back apostrophe (`) character to force PowerShell to
interpret a single quotation mark or a double quotation mark literally, such as

"You use a double quotation mark (`") with expandable strings."

Escape Codes and Wildcards

In several previous examples, we used the back apostrophe (`) as an escape char-
acter to force PowerShell to interpret a single quotation mark, a double quotation
mark, or a variable literally. When an escape character precedes a single or double
quotation mark, Windows PowerShell interprets the single or double quotation
mark as a literal character, not as a string delimiter. When an escape character
 precedes a variable, it prevents a value from being substituted for the variable.

Within a string, the escape character also can indicate a special character. Power-
Shell recognizes the special characters listed in Table 5-17. To see how you can use a
tab character in a string, review the following example and sample output:

$s = "Please specify the computer name `t []"
$c = read-host $s
write-host "You entered: `t $c"

Please specify the computer name []: corpserver45

You entered: corpserver45

Here, you create a string with a tab character. You then use the Read-Host cmdlet
to display the string while waiting for input from the user. You store the input from
the user in a variable for later user, and then you use the Write-Host cmdlet to dis-
play a string with a tab character and the value the user entered.

TABLE 5-17 Escape Codes in Windows PowerShell

ESCAPE CODE MEANING

`’ Single quotation mark

`” Double quotation mark

"He said, ""Hello, Bob"""

'He won''t go to the store.'

"You use a double quotation mark (`") with expandable strings."

$s = "Please specify the computer name `t []"
$c = read-host $s
write-host "You entered: `t $c"

Please specify the computer name []: corpserver45

You entered: corpserver45

 Navigating Core Windows PowerShell Structures CHAPTER 5 151

 TABLE 5-17 Escape Codes in Windows PowerShell

 ESCAPE CODE MEANING

 ̀0 Null character

 ̀a Alert (sends a bell or beep signal to the computer speaker)

 ̀b Backspace

 ̀f Form feed (used with printer output)

 ̀n New line

 ̀r Carriage return

 ̀t Horizontal tab (eight spaces)

 ̀v Vertical tab (used with printer output)

 Often when you are working with strings, you might need to match part of a
string to get a desired result. To do this, you use the wildcards listed previously in
Table 5-5. When you work with character ranges and subsets, keep in mind the
characters can be in these ranges:

 [a to z] or [A to Z] for alphabetic characters

 [0-9] for numeric characters

 Generally, PowerShell matches characters whether they are uppercase or low-
ercase. Because of this, in most instances, these ranges are interpreted the same
whether you use uppercase or lowercase letters—for example:

 [a-c] and [A-C] are the same.

 [abc] and [ABC] are the same.

 However, when you get into regular expressions, there are times when Power-
Shell performs case-sensitive matches. As you’ve seen in past examples, wildcards
are useful when you want to perform pattern matching within strings, especially
when you are passing string values to cmdlet parameters. Although some cmdlet
parameters support wildcards being passed in values, not all do, and you’ll want to
confi rm whether a parameter supports wildcards using the –Full help details. For
example, if you type get-help get-alias –full, you see the full help details for the
Get-Alias cmdlet as shown partially in this example:

NAME
 Get-Alias

SYNOPSIS
 Gets the aliases for the current session.

SYNTAX
 Get-Alias [-Exclude <string[]>] [-Name <string[]>] [-Scope <string>]
[<CommonParameters>]

NAME
 Get-Alias

SYNOPSIS
 Gets the aliases for the current session.

SYNTAX
 Get-Alias [-Exclude <string[]>] [-Name <string[]>] [-Scope <string>]
[<CommonParameters>]

CHAPTER 5 Navigating Core Windows PowerShell Structures152

DETAILED DESCRIPTION
 The Get-Alias cmdlet gets the aliases (alternate names for commands
and executable files) in the current session.

PARAMETERS
 -Definition <string[]>
 Gets the aliases for the specified item. Enter the name of a
cmdlet, function, script, file, or executable file.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? true

Here, you know the –Defi nition parameter accepts wildcards being passed in
values because Accept WildCard Characters is set to True. If the parameter does not
accept wildcards, Accept WildCard Characters is set to False.

Multiline Strings

When you want a string to have multiple lines, precede and follow the string value
with @. This type of string is referred to as a here-string, and the same rules for single
quotes and double quotes apply. Consider the following example and sample output:

$myString = @"
=========================
$env:computername
=========================
"@
write-host $myString

=========================

EngPC85

=========================

Data strings are another type of multiline string. PowerShell supports data strings
primarily for script internationalization because data strings make it easier to sepa-
rate data and code by isolating strings that might be translated into other languages.
There’s no reason, however, that you can’t use data strings for other purposes, and
they are much more versatile than other types of strings. Primarily, this is because
data strings are referenced with a variable name and can include programming logic.

The basic syntax for a data string is

DATA StringName {
 StringText
}

DETAILED DESCRIPTION
 The Get-Alias cmdlet gets the aliases (alternate names for commands
and executable files) in the current session.

PARAMETERS
 -Definition <string[]>
 Gets the aliases for the specified item. Enter the name of a
cmdlet, function, script, file, or executable file.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? true

$myString = @"
=========================
$env:computername
=========================
"@
write-host $myString

=========================

EngPC85

=========================

DATA StringName {
 StringText
}

 Navigating Core Windows PowerShell Structures CHAPTER 5 153

 where StringName sets the name for the data string as a variable, and StringText can
include the following: one or more single-quoted strings, double-quoted strings,
here-strings, or any combination thereof. Note that the DATA keyword is not case
sensitive, meaning you can use DATA, data, or even Data to denote the beginning of
the data string.

 The following example declares a data string named MyValues:

DATA MyValues {
 "This is a data string."
 "You can use data strings in many different ways."
}

 You use or reference the MyValues string by its name. To display the data string’s
contents at the prompt, type the following command:

Write-Host $MyValues

 You can also type

$MyValues

 The extended syntax for data strings is

DATA StringName [-supportedCommand CmdletNames] {
PermittedContent
}

 Here, CmdletName provides a comma-separated list of cmdlets that you use in
the data string, and PermittedContent includes any of the following elements:

 Strings and string literals

 Any PowerShell operators, except –match

 If, Else, and ElseIf statements

 Certain automatic variables, including $PsCulture, $PsUICulture, $True,
$False, and $Null

 Statements separated by semicolons, comments, and pipelines

 Adding cmdlets and programming elements to data strings makes them work
much like functions, and in many cases you’ll fi nd it easier to simply use a func-
tion than to treat a data string like a function. For more information on functions,
see the “Creating and Using Functions” section in Chapter 6, “Mastering Aliases,
Functions, and Objects.”

 Strings that contain prohibited elements, such as variables or subexpressions,
must be enclosed in single-quoted strings or here-strings so that the variables
are not expanded and subexpressions are not executable. The only cmdlet you
don’t have to declare as supported is ConvertFrom-StringData. The ConvertFrom-
 StringData cmdlet converts strings that contain one or more “name=value” pairs

DATA MyValues {
 "This is a data string."
 "You can use data strings in many different ways."
}

DATA StringName [-supportedCommand CmdletNames] {
PermittedContent
}

CHAPTER 5 Navigating Core Windows PowerShell Structures154

into associative arrays. Because each “name=value” pair must be on a separate line,
you typically use here-strings as the input format. However, PowerShell allows you
to use single-quoted or double-quoted strings or here-strings.

 The following example shows how the ConvertFrom-StringData cmdlet can be
used with data strings:

DATA DisplayNotes {
 ConvertFrom-StringData -stringdata @'
 Note1 = This appears to be the wrong syntax.
 Note2 = There is a value missing.
 Note3 = Cannot connect at this time.
 '@
}

 In this example, you create a data string called DisplayNotes and use ConvertFrom-
StringData to create a related associative array with three separate strings: Note1,
Note2, and Note3. You are then able to reference the strings using dot notation.
To display the fi rst string, you use $DisplayNotes.Note1; for the second string, you
use $DisplayNotes.Note2; and for the third string, you use $DisplayNotes.Note3. To
display all the notes, you simply type $DisplayNotes.

 With a here-string, you can use a similar technique to create an array of strings—
for example:

$string = @'
 Note1 = This appears to be the wrong syntax.
 Note2 = There is a value missing.
 Note3 = Cannot connect at this time.
 '@

$strArray = $string | convertfrom-stringdata

 The here-string defi ned in this example contains the same strings as the previous
example. You then use a pipeline operator (|) to send the value of the here-string
to ConvertFrom-StringData. The command saves the result in the $strArray variable,
and you can use the same techniques discussed previously to access the strings.

String Operators

 As you learned in “Comparison Operators” earlier in the chapter, you can use many
operators with strings and arrays. These include –eq, –ne, –lt, –gt, –le, –ge, –like,
–notlike, –match, –notmatch, –contains, –notcontains, and –replace.

 You also can use the following special operators with strings:

 = Assigns a string value to a variable

 + Concatenates strings by adding them together

 * Repeats a string some number of times

DATA DisplayNotes {
 ConvertFrom-StringData -stringdata @'
 Note1 = This appears to be the wrong syntax.
 Note2 = There is a value missing.
 Note3 = Cannot connect at this time.
 '@
}

$string = @'
 Note1 = This appears to be the wrong syntax.
 Note2 = There is a value missing.
 Note3 = Cannot connect at this time.
 '@

$strArray = $string | convertfrom-stringdata

 Navigating Core Windows PowerShell Structures CHAPTER 5 155

 –Join Joins strings by adding them together with or without delimiters

 –Split Splits a string on spaces or a specifi ed delimiter

 –f Formats a string using the extended formatting syntax

 The most common string operations you’ll want to perform are assignment and
concatenation. As you’ve seen in previous examples, you assign values to strings
using the equal sign, such as

$myString = "This is a String."

 Concatenation is the technical term for adding strings together. The normal
operator for string concatenation is the + operator. Using the + operator, you can
add strings together as follows:

$streetAdd = "123 Main St."
$cityState = "Anywhere, NY"
$zipCode = "12345"
$custAddress = $streetAdd + " " + $cityState + " " + $zipCode
$custAddress

123 Main St. Anywhere, NY 12345

 Sometimes you might also want to add a string stored in a variable to output you
are displaying. You can do this simply by referencing the variable containing the
string as part of the double-quoted output string as shown here:

$company = "XYZ Company"
Write-Host "The company is: $company"

The company is: XYZ Company

 Concatenation of arrays works much like concatenation of strings. Using the +
operator, you can add arrays together as shown in this example:

$array1 = "PC85", "PC25", "PC92"
$array2 = "SERVER41", "SERVER32", "SERVER87"
$joinedArray = $array1 + $array2
$joinedArray

PC85

PC25

PC92

SERVER41

SERVER32

SERVER87

$myString = "This is a String."

$streetAdd = "123 Main St."
$cityState = "Anywhere, NY"
$zipCode = "12345"
$custAddress = $streetAdd + " " + $cityState + " " + $zipCode
$custAddress

123 Main St. Anywhere, NY 12345

$company = "XYZ Company"
Write-Host "The company is: $company"

The company is: XYZ Company

$array1 = "PC85", "PC25", "PC92"
$array2 = "SERVER41", "SERVER32", "SERVER87"
$joinedArray = $array1 + $array2
$joinedArray

PC85

PC25

PC92

SERVER41

SERVER32

SERVER87

CHAPTER 5 Navigating Core Windows PowerShell Structures156

Multiplication of strings and arrays can be handy when you want to repeat the
character in a string or the values in an array a specifi ed number of times. For ex-
ample, if you have a string with the + character stored in it, you might want to make
an 80-character string of + characters act as a dividing line in output. You can do
this as shown in the following example and sample output:

$separator = "+"
$sepLine = $separator * 60
$sepLine

++

 You use the –Join and –Split operators to join and split strings, respectively. The
basic syntaxes for joining strings are

-Join (String1, String2, String3 …)

String1, String2, String3 … -Join "Delimiter"

 The fi rst syntax simply joins a collection of strings together. The second syntax
joins a collection of strings while specifying a delimiter to use between them. To see
how you can join strings without delimiters, consider the following example and
sample output:

$a = -join ("abc", "def", "ghi")
$a

abcdefghi

 To see how you can join strings with delimiters, consider the following example
and sample output:

$a = "abc", "def", "ghi" –join ":"
$a

abc:def:ghi

The basic syntaxes for splitting strings are

-Split String

String -Split "Delimiter" [,MaxSubStrings]

$separator = "+"
$sepLine = $separator * 60
$sepLine

++

-Join (String1, String2, String3 …)3

String1, String2, String3 … -Join "3 Delimiter"

$a = -join ("abc", "def", "ghi")
$a

abcdefghi

$a = "abc", "def", "ghi" –join ":"
$a

abc:def:ghi

-Split String

String -Split "g Delimiter" [,MaxSubStrings]

 Navigating Core Windows PowerShell Structures CHAPTER 5 157

 With the fi rst syntax, you can split a string using the spaces between words as
delimiters. To see how, consider the following example and sample output:

$a = "abc def ghi"
-Split $a

abc

def

ghi

 You also can split strings based on a delimiter as shown in this example:

$a = "jkl:mno:pqr"
$a -Split ":"

jkl

mno

pqr

 You use the –f operator to format a string using the extended formatting syntax.
With this syntax, you specify exactly how you want to format a series of numeric,
alphabetic, or alphanumeric values.

 The basic structure is to specify the desired formatting on the left of the –f
operator and the values to format in a comma-separated list on the right, as shown
in this example:

'FormatingInstructions' –f "Value1", "Value2", "Value3", …

 In the formatting instructions, {0} represents the fi rst value, {1} the second value,
and so on. Knowing this, you can use the formatting instructions to modify the or-
der of values, convert values to different formats, or both. In the following example
and sample output, you reverse the order of the values in the output:

'{2} {1} {0}' -f "Monday", "Tuesday", "Wednesday"

Wednesday Tuesday Monday

 You are not limited to forward or reverse order. You control the output order
and can specify any desired order, such as

'{2} {0} {1}' -f "Cloudy", "Sunny", "Rainy"

Rainy Cloudy Sunny

$a = "abc def ghi"
-Split $a

abc

def

ghi

$a = "jkl:mno:pqr"
$a -Split ":"

jkl

mno

pqr

'FormatingInstructions' –f "Value1", "Value2", "Value3", …

'{2} {1} {0}' -f "Monday", "Tuesday", "Wednesday"

Wednesday Tuesday Monday

'{2} {0} {1}' -f "Cloudy", "Sunny", "Rainy"

Rainy Cloudy Sunny

CHAPTER 5 Navigating Core Windows PowerShell Structures158

The number of formatting instructions must exactly match the number of values
to format. Otherwise, values will be omitted, which is fi ne if this is your intention. In
the following example, you omit the second value:

'{0} {2}' -f "Server15", "Server16", "Server17"

Server15 Server17

To each individual formatting instruction, you can add one of the conversion
indicators listed in Table 5-18.

 TABLE 5-18 Conversion Indicators for Formatting

 FORMAT

SPECIFIER DESCRIPTION EXAMPLE OUTPUT

 :c or :C Converts a numeric format to
currency format (based on the
computer’s locale).

‘{0:c}’ –f 145.50 $145.50

 :e or :E Converts to scientifi c
(exponential) notation. Add
a numeric value to specify
 precision (the number of digits
past the decimal point).

‘{0:e4}’ –f
[Math]::Pi

3.1416e+000

 :f or :F Converts to fi xed-point nota-
tion. Add a numeric value to
specify precision (the number of
digits past the decimal point).

‘{0:f4}’ –f
[Math]::Pi

3.1426

 :g or :G Converts to the most compact
notation, either fi xed-point
or scientifi c notation. Add a
numeric value to specify the
number of signifi cant digits.

‘{0:g3}’ –f
[Math]::Pi

3.14

 :n or :N Converts to a number with
culture-specifi c separators
between number groups. Add a
numeric value to specify preci-
sion (the number of digits past
the decimal point).

‘{0:n2}’ –f 1GB 1,073,741,824.00

 :p or :P Converts a numeric value to
a percentage. Add a numeric
value to specify precision (the
number of digits past the
 decimal point).

‘{0:p2}’ –f .112 11.20 %

'{0} {2}' -f "Server15", "Server16", "Server17"

Server15 Server17

 Navigating Core Windows PowerShell Structures CHAPTER 5 159

TABLE 5-18 Conversion Indicators for Formatting

FORMAT

SPECIFIER DESCRIPTION EXAMPLE OUTPUT

:r or :R Converts a number with
 precision to guarantee the
 original value is returned if
 parsing is reversed.

‘{0:r}’ –f
(1GB/2.0)

536870912

Note:

(536870912 * 2) =
1,073,741,824

:x or :X Converts the numeric value to
hexadecimal format.

‘{0:x}’ –f
12345678

bc614e

{N:hh} :
{N:mm} :
{N:ss}

Converts a datetime object to
a two-digit hour, minute, and
second format. You can omit
any portion to get a subset.

‘{0:hh:0:mm}’ –f
(get-date)

12:35

{N:ddd} Converts a datetime object to
a day of the week. It can be
combined with the previous
format listed.

‘{0:ddd}
{0:hh:0:mm}’ –f
(get-date)

Mon 12:57

Working with Arrays and Collections

In Windows PowerShell, the terms array and collection are interchangeable. Arrays
are data structures for storing a series of values. Using arrays, you can group related
sets of data together, and PowerShell doesn’t care whether the data you group is
like-typed or not. For example, although you can group sets of numbers, strings,
or objects in separate arrays, you also can combine values of different types in the
same array.

The most common type of array you’ll use is a one-dimensional array. A
 one-dimensional array is like a column of tabular data, a two-dimensional array is
like a spreadsheet with rows and columns, and a three-dimensional (3-D) array is
like a 3-D grid.

Elements in an array are indexed and can be accessed by referencing their index
position. With a one-dimensional array, you access elements in the array by specify-
ing a single index value. You also can create arrays with multiple dimensions if you
want to. With multidimensional arrays, you access elements in the array by specify-
ing multiple index values.

NOTE Windows PowerShell also supports associative arrays, which are name-value

pairs stored in arrays. For more information, see the “Multiline Strings” section earlier

in this chapter.

CHAPTER 5 Navigating Core Windows PowerShell Structures160

Creating and Using One-Dimensional Arrays

Windows PowerShell has several operators for working with arrays. The one
you’ll use most is the comma. You use the comma to separate elements in a one-
dimensional array. The basic syntax for this type of array is

$VarName = Element1, Element2, Element3, …

where VarName is the variable in which the array will be stored, Element1 is the fi rst
item in the array, Element2 is the second, and so on.

The following example creates an array of numbers:

$myArray = 2, 4, 6, 8, 10, 12, 14

 You can just as easily create an array of strings, such as

$myStringArray = "This", "That", "Why", "When", "How", "Where"

You access the elements in the array by passing the index position to the []
operator. PowerShell numbers the array elements starting from zero. This means
the fi rst element has an index position of 0, the second has an index position of 1,
and so on. The basic syntax is

$VarName[Index]

where VarName is the variable in which the array is stored, and Index is the index
position you want to work with. Knowing this, you can return the fi rst element in the
$myStringArray as shown here:

$myStringArray[0]

This

You can work with the index in several ways. You can use an index value of –1 to
reference the last element of the array, –2 to reference the second to last, and so on.
This example returns the last element in the array:

$myStringArray[-1]

Where

$VarName = Element1, Element2, Element3, …

$myArray = 2, 4, 6, 8, 10, 12, 14

$myStringArray = "This", "That", "Why", "When", "How", "Where"

$VarName[Index]

$myStringArray[0]

This

$myStringArray[-1]

Where

 Navigating Core Windows PowerShell Structures CHAPTER 5 161

 You also can access ranges of elements in an array using the range operator (..).
The following example returns elements 1, 2, and 3:

$myStringArray[0..2]

This

That

Why

 By mixing these techniques, you can work with arrays in different ways. For example,
the following statement returns the last, fi rst, and second elements in the array:

$myStringArray[-1..1]

Where

This

That

 This example goes through the array backward from the last to the second-to-
last to the third-to-last:

$myStringArray[-1..-3]

Where

How

When

 However, to return both a series of elements and a range of elements, you must
separate the series and the range using the + operator. The following example
returns element 1, element 2, and elements 4 to 6:

$myStringArray[0,1+3..5]

This

That

When

How

Where

 Using the Length property, you can determine the number of elements in an
array. For example, typing $myArray.Length returns a value of 7. You can use

$myStringArray[0..2]

This

That

Why

$myStringArray[-1..1]

Where

This

That

$myStringArray[-1..-3]

Where

How

When

$myStringArray[0,1+3..5]

This

That

When

How

Where

CHAPTER 5 Navigating Core Windows PowerShell Structures162

the Length property when accessing elements in the array as well. The following
example returns elements 5 to 6:

$myStringArray[4..($myArray.Length-1)]

How

Where

Using the Cast Array Structure

Another way to create an array is to use the array cast structure. The basic syntax is

$VarName = @(Element1, Element2, Element3, …)

where VarName is the variable in which the array will be stored, Element1 is the fi rst
item in the array, Element2 is the second, and so on.

The following example creates an array of numbers:

$myArray = @(3, 6, 9, 12, 15, 18, 21)

 The advantage of the cast array syntax is that if you use semicolons instead of
commas to separate values, PowerShell treats each value as command text. This
means PowerShell executes the value as if you typed it at the prompt and then
stores the result. Consider the following example:

$myArray = @(14; "This"; get-process)

 As shown in the following example and sample output, the fi rst element is cre-
ated as an integer:

$myArray[0].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

 The second element is created as a string:

$myArray[1].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

$myStringArray[4..($myArray.Length-1)]

How

Where

$VarName = @(Element1, Element2, Element3, …)

$myArray = @(3, 6, 9, 12, 15, 18, 21)

$myArray = @(14; "This"; get-process)

$myArray[0].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True Int32 System.ValueType

$myArray[1].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

 Navigating Core Windows PowerShell Structures CHAPTER 5 163

 And the third element is created as a collection of Process objects:

$myArray[2].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False Process System.ComponentModel.Component

Assigning and Removing Values

 After you create an array, you can change the array’s values through a simple as-
signment. For example, if you defi ne the following array,

$myArray = @(3, 6, 9, 12, 15, 18, 21)

 you can change the value of the second element in $myArray using the following
assignment:

$myArray[1] = 27

 You also can use the SetValue() method to change a value in an array. The syntax is

$VarName.SetValue(NewValue,IndexPos)

 where VarName is the variable in which the array was stored, NewValue is the new
value you want to assign, and IndexPos is the index position of the value to change.
Following this, you can change the value of the fi rst element in $myArray using
the following assignment:

$myArray.SetValue(52,0)

 To add elements to an existing array, you can use the += operator to assign a
new value. For example, to append an element to $myArray with a value of 75, you
type the following command:

$myArray += 75

 PowerShell won’t let you easily delete elements in an array, but you can cre-
ate a new array that contains only a subset of elements from an existing array. For
example, to create the $myNewArray array with all elements in $myArray, except for
the value at index position 3, you type

$myNewArray = $myArray[0..2+4..($myArray.length - 1)]

$myArray[2].gettype()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True False Process System.ComponentModel.Component

$myArray = @(3, 6, 9, 12, 15, 18, 21)

$myArray[1] = 27

$VarName.SetValue(NewValue,IndexPos)

$myArray.SetValue(52,0)

$myArray += 75

$myNewArray = $myArray[0..2+4..($myArray.length - 1)]

CHAPTER 5 Navigating Core Windows PowerShell Structures164

You can combine multiple arrays into a single array using the plus operator (+).
The following example creates three arrays and then combines them into one array:

$array1 = 1,2,3,4
$array2 = 5,6,7,8
$array3 = 9,10,11,12
$cArray = $array1 + $array2 + $array3

Because large arrays can use up memory, you might want to delete an array
when you are fi nished working with it. To delete an array, use the Remove-Item
 cmdlet to delete the variable that contains the array. The following command
 deletes $myArray:

remove-item variable:myArray

Using Strict Types in Arrays

Sometimes when you are working with arrays, you might want to ensure an array
can store only strings, numbers, or objects of a particular type. The way to do this is
to declare the array’s type when you create the array.

You can declare an array of any type, but the declared type uses the [] operator
as shown here:

 [int32[]]$myArray Creates an array of integers

 [bool[]]$myArray Creates an array of Booleans

 [object[]]$myArray Creates an array of objects

 [string[]]$myArray Creates an array of strings

 For example, if you want to create an array of integers and assign integer values,
you can use the following declaration:

[int32[]]$myArray = 5,10,15,20,25,30,35

 Because the array is strictly typed, you can use only the declared value type with
it. For example, if you try to change a value to a string, you get an error as shown in
the following example and sample output:

$myArray[0]= "Kansas"

Array assignment to [0] failed: Cannot convert value "Kansas" to type

"System.Int32". Error: "Input string was not in a correct format.".

At line:1 char:10

+ $myArray[<<<< 0]= "Kansas"

 + CategoryInfo : InvalidOperation: (Kansas:String) [], RuntimeException

 + FullyQualifiedErrorId : ArrayAssignmentFailed

$array1 = 1,2,3,4
$array2 = 5,6,7,8
$array3 = 9,10,11,12
$cArray = $array1 + $array2 + $array3

remove-item variable:myArray

[int32[]]$myArray = 5,10,15,20,25,30,35

$myArray[0]= "Kansas"

Array assignment to [0] failed: Cannot convert value "Kansas" to type

"System.Int32". Error: "Input string was not in a correct format.".

At line:1 char:10

+ $myArray[<<<< 0]= "Kansas"

 + CategoryInfo : InvalidOperation: (Kansas:String) [], RuntimeException

 + FullyQualifiedErrorId : ArrayAssignmentFailed

 Navigating Core Windows PowerShell Structures CHAPTER 5 165

Using Multidimensional Arrays

 Multidimensional arrays are arrays that support multiple index positions. With a
two-dimensional array, you create a table with rows and columns. Because you
 access any row using the fi rst index and any column using the second index, these
can be thought of as x-coordinates and y-coordinates as well.

 Consider the following example.

 INDEX COLUMN 0 COLUMN 1 COLUMN 2

 ROW 0 Red Green Blue

 ROW 1 Washington Ohio Florida

 ROW 2 Ocean Lake Stream

 ROW 3 Sky Clouds Rain

 Here, you have a table with rows and columns that you want to store in an array.
The convention is to reference the row index and then the column index. The value
in row 0, column 0 is Red. The value in row 0, column 1 is Green, and so on.

 Although you can create one-dimensional arrays with simple constructors, PowerShell
handles arrays of two or more dimensions as objects. Because of this, you must fi rst create
the array and then populate the array. The syntax for creating a two-dimensional array is

$VarName = new-object 'object[,]' numRows,numColumns

 where VarName is the variable in which the array will be stored, object[,] specifi es
you are creating a two-dimensional array, numRows sets the number of rows, and
numColumns sets the number of columns.

 The following example creates an array with 4 rows and 3 columns:

$myArray = new-object 'object[,]' 4,3

 After you create the array, you can populate each value according to its row and
column index position as shown in this example:

$myArray[0,0] = "Red"
$myArray[0,1] = "Green"
$myArray[0,2] = "Blue"
$myArray[1,0] = "Washington"
$myArray[1,1] = "Ohio"
$myArray[1,2] = "Florida"
$myArray[2,0] = "Ocean"
$myArray[2,1] = "Lake"
$myArray[2,2] = "Stream"
$myArray[3,0] = "Sky"
$myArray[3,1] = "Clouds"
$myArray[3,2] = "Rain"

$VarName = new-object 'object[,]' numRows,numColumns

$myArray = new-object 'object[,]' 4,3

$myArray[0,0] = "Red"
$myArray[0,1] = "Green"
$myArray[0,2] = "Blue"
$myArray[1,0] = "Washington"
$myArray[1,1] = "Ohio"
$myArray[1,2] = "Florida"
$myArray[2,0] = "Ocean"
$myArray[2,1] = "Lake"
$myArray[2,2] = "Stream"
$myArray[3,0] = "Sky"
$myArray[3,1] = "Clouds"
$myArray[3,2] = "Rain"

CHAPTER 5 Navigating Core Windows PowerShell Structures166

After you populate the array, you can return a value at a row/column position,
such as

$myArray[0,1]

Green

Creating an array of three or more dimensions works in much the same way.
The difference is that you must accommodate dimension. The syntax for creating a
three-dimensional array is

$VarName = new-object 'object[,,]' numX,numY,numZ

where VarName is the variable in which the array will be stored, object[,,] specifi es
you are creating a three-dimensional array, and numX, numY, and numZ set the X, Y,
and Z grid coordinates.

 The following example creates an array with 5 rows, 5 columns, and 3 levels:

$a = new-object 'object[,,]' 5,5,3

 This array is like 3 tables, each of 5 rows and 5 columns, stacked on top of each
other. Knowing this, you can set the value for the 0, 0, 0 coordinate as

$a[0,0,0] = "Texas"

 At the time of this writing, PowerShell supports up to 17 dimensions, and you can
create an array of 17 dimensions, using 16 commas for the object[] constructor and
then entering 17 coordinate values, as in the following example:

$myHugeArray = new-object 'object[,,,,,,,,,,,,,,,]'
5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,4

 If you create such a large array, be sure to remove it when you are fi nished, to
free up memory.

$myArray[0,1]

Green

$VarName = new-object 'object[,,]' numX,numY,numZ

$a = new-object 'object[,,]' 5,5,3

$a[0,0,0] = "Texas"

$myHugeArray = new-object 'object[,,,,,,,,,,,,,,,]'
5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,4

167

CHAP TER 6

Mastering Aliases, Functions,
and Objects

Creating and Using Aliases 168

Creating and Using Functions 175

Working with Objects 185

Working with COM and .NET Framework Objects 197

Working with WMI Objects and Queries 206

Beyond the core structures discussed in the previous chapter, you’ll find a number
of other essential elements you’ll use whenever you work with Windows

PowerShell. These include

 Aliases

 Functions

 Objects

Whenever you work with Windows PowerShell, you’ll use these essential elements
to help you do more with less and to help you use PowerShell to perform any
conceivable administrative task. Because the discussion in this chapter ties in
closely with the discussion in previous chapters, you should read those chapters
before continuing with this chapter. Also, as with the core structures, once we
examine these essential elements, we won’t rehash these discussions when we put
these essential elements to work in upcoming chapters. For example, if we use
Get-WmiObject to access Windows Management Instrumentation (WMI) objects
on a computer and retrieve the Win32_Processor object, we won’t go into detail
on how this works (because this is already discussed here); instead, we’ll focus on
the new concept we are introducing, such as how to evaluate the clock speed of
a computer’s processor or how to take an inventory of all computers running a
specified version of Windows.

 CHAPTER 6 Mastering Aliases, Functions, and Objects168

Creating and Using Aliases

PowerShell aliases provide alternate names for commands, functions, scripts, files,
executables, and other command elements. PowerShell has many default aliases
that map to commands, and you can create your own aliases as well. Aliases are
designed to save you keystrokes, and each command can have multiple aliases. For
example, ls is also an alias of Get-ChildItem. In UNIX environments, ls is used to list
the contents of a directory and, in fact, the output of Get-ChildItem is more similar
to UNIX ls than to Windows dir.

Using the Built-In Aliases

Table 6-1 shows some of the default aliases. Although there are many other default
aliases, you’ll use these aliases most frequently.

TABLE 6-1 Commonly Used Aliases

ALIAS ASSOCIATED CMDLET

clear, cls Clear-Host

diff Compare-Object

cp, copy Copy-Item

epal Export-Alias

epcsv Export-Csv

foreach ForEach-Object

fl Format-List

ft Format-Table

fw Format-Wide

gal Get-Alias

ls, dir Get-ChildItem

gcm Get-Command

cat, type Get-Content

h, history Get-History

gl, pwd Get-Location

gps, ps Get-Process

gsv Get-Service

gv Get-Variable

 Mastering Aliases, Functions, and Objects CHAPTER 6 169

TABLE 6-1 Commonly Used Aliases

ALIAS ASSOCIATED CMDLET

group Group-Object

ipal Import-Alias

ipcsv Import-Csv

r Invoke-History

ni New-Item

mount New-MshDrive

nv New-Variable

rd, rm, rmdir, del, erase Remove-Item

rv Remove-Variable

sal Set-Alias

sl, cd, chdir Set-Location

sv, set Set-Variable

sort Sort-Object

sasv Start-Service

sleep Start-Sleep

spps, kill Stop-Process

spsv Stop-Service

write, echo Write-Output

Table 6-2 lists commands that exist internally within the Windows command
shell (cmd.exe) and do not have separate executable files. Each internal command
is followed by a brief description. Because cmdlets behave differently from these
commands, you must know exactly what you are executing. For this reason, I also
provide a notation when a default alias precludes use of the command. You can run
commands internal to the Windows command shell at the PowerShell prompt or in
a PowerShell script. To do so, invoke the command shell with appropriate parameters
followed by the name of the internal command to execute. Typically, you’ll want
to use the /c parameter, which tells the command shell to carry out the specified
command and then terminate. For example, if you want to use the internal dir
command, you can type the following at the PowerShell prompt:

cmd /c dir

 CHAPTER 6 Mastering Aliases, Functions, and Objects170

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME DESCRIPTION OVERRIDDEN BY

assoc Displays or modifies the current file
 extension associations.

break Sets breaks for debugging.

call Calls a procedure or another script from
within a script.

cd (chdir) Displays the current directory name,
or changes the location of the current
 directory.

Set-Location

cls Clears the command window and erases
the screen buffer.

Clear-Host

color Sets the text and background colors of the
command-shell window.

copy Copies files from one location to another,
or concatenates files.

Copy-Item

date Displays or sets the system date.

del (erase) Deletes the specified file, files, or directory. Remove-Item

dir Displays a list of subdirectories and files in
the current or specified directory.

Get-ChildItem

dpath Allows programs to open data files in
specified directories as if they were in the
current directory.

echo Displays text strings to PowerShell; sets
command echoing state (on | off).

Write-Output

endlocal Ends localization of variables.

exit Exits the command shell.

for Runs a specified command for each file in
a set of files.

ftype Displays current file types, or modifies file
types used in file extension associations.

goto Directs the command interpreter to a
labeled line in a batch script.

if Performs conditional execution of
 commands.

 Mastering Aliases, Functions, and Objects CHAPTER 6 171

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME DESCRIPTION OVERRIDDEN BY

md (mkdir) Creates a subdirectory in the current or
specified directory.

*md invokes mkdir
(via cmd.exe)

mklink Creates either a symbolic link or a hard
link, for either a file or a directory.

move Moves a file or files from the current or
designated source directory to a desig-
nated target directory. It can also be used
to rename a directory.

Move-Item

path Displays or sets the command path the
operating system uses when searching for
executables and scripts.

pause Suspends processing of a batch file, and
waits for keyboard input.

popd Makes the directory saved by PUSHD the
current directory.

Pop-Location

prompt Sets the text for the command prompt.

pushd Saves the current directory location and
then optionally changes to the specified
directory.

Push-Location

rd (rmdir) Removes a directory or a directory and its
subdirectories.

Remove-Item

rem Sets a remark in batch scripts or Config.sys.

ren (rename) Renames a file or files. Rename-Item (for ren
only)

set Displays current environment variables, or
sets temporary variables for the current
command shell.

Set-Variable

setlocal Marks the start of variable localization in
batch scripts.

shift Shifts the position of replaceable param-
eters in batch scripts.

start Starts a separate window to run a specified
program or command.

Start-Process

time Displays or sets the system time.

CHAPTER 6 Mastering Aliases, Functions, and Objects172

TABLE 6-2 Internal Commands for the Windows Command Shell

NAME DESCRIPTION OVERRIDDEN BY

title Sets the title for the command-shell
 window.

type Displays the contents of a text fi le. Get-Content

verify Causes the operating system to verify fi les
after writing fi les to disk.

vol Displays the disk’s volume label and serial
number.

Creating Aliases

The following cmdlets are available for working with aliases:

 Get-Alias Lists all or specifi ed aliases set in the current session by name
and defi nition.

Get-Alias [[-Name | -Definition] Strings] [AddtlParams]

AddtlParams=
[-Exclude Strings] [-Scope String]

 New-Alias Creates a new alias.

New-Alias [-Description String] [-Name] String [-Value] String
[AddtlParams]

AddtlParams=
[-Force] [-PassThru] [-Scope String] [-Option None | ReadOnly |
Constant | Private | AllScope]

 Set-Alias Creates a new alias, or changes the defi nition of an existing alias.

Set-Alias [-Description String] [-Name] String [-Value] String
[AddtlParams]

AddtlParams=
[-Force] [-PassThru] [-Scope String] [-Option None | ReadOnly |
Constant | Private | AllScope]

 Export-Alias Exports all the aliases that are currently in use in the Power-
Shell console to an alias fi le. This includes the built-in aliases as well as aliases
you’ve created.

Get-Alias [[-Name | -Definition] Strings] [AddtlParams]

AddtlParams=
[-Exclude Strings] [-Scope String]

New-Alias [-Description String] [-Name] String [-Value]g String
[AddtlParams]

AddtlParams=
[-Force] [-PassThru] [-Scope String] [-Option None | ReadOnly |
Constant | Private | AllScope]

Set-Alias [-Description String] [-Name] String [-Value]g String
[AddtlParams]

AddtlParams=
[-Force] [-PassThru] [-Scope String] [-Option None | ReadOnly |
Constant | Private | AllScope]

 Mastering Aliases, Functions, and Objects CHAPTER 6 173

Export-Alias [-Append] [-As Csv | Script] [-Path] String
[AddtlParams]

AddtlParams=
[-Description String] [-Force] [-NoClobber] [-PassThru]
[-Scope String] [[-Name] Strings]

 Import-Alias Imports an alias fi le into a PowerShell console. The aliases
can then be used in that PowerShell session. You must reload the aliases
each time you open a PowerShell console.

Import-Alias [-Path] String [AddtlParams]

AddtlParams=
[-PassThru] [-Force] [-Scope String]

 As mentioned previously, you can use the Get-Alias cmdlet to list all of the avail-
able aliases. To get particular aliases, use the –Name parameter of the Get-Alias
cmdlet. For example, to get aliases that begin with “a”, use the following command:

get-alias -name a*

 To get aliases according to their values, use the –Defi nition parameter. For ex-
ample, to get aliases for the Remove-Item cmdlet, type the following command:

get-alias -definition Remove-Item

 You can create aliases using either the New-Alias cmdlet or the Set-Alias cmdlet.
The primary difference between them is that New-Alias creates an alias only if a
like-named alias does not yet exist, while Set-Alias overwrites an existing alias with
the new association you provide. The basic syntax is

set-alias –name AliasName –value CommandName

 where AliasName is the alias you want to use or modify, and CommandName is the
cmdlet you want to associate with the alias. The following example creates a “cm”
alias for Computer Management:

set-alias -name cm -value c:\windows\system32\compmgmt.msc

 Because the –Name and –Value parameters are position sensitive, you pass the
related values in order without having to specify the parameter name, as shown in
this example:

set-alias cm c:\windows\system32\compmgmt.msc

Export-Alias [-Append] [-As Csv | Script] [-Path] String
[AddtlParams]

AddtlParams=
[-Description String] [-Force] [-NoClobber] [-PassThru]
[-Scope String] [[-Name] Strings]

Import-Alias [-Path] String [AddtlParams]g

AddtlParams=
[-PassThru] [-Force] [-Scope String]

get-alias -name a*

get-alias -definition Remove-Item

set-alias –name AliasName –value CommandName

set-alias -name cm -value c:\windows\system32\compmgmt.msc

set-alias cm c:\windows\system32\compmgmt.msc

CHAPTER 6 Mastering Aliases, Functions, and Objects174

MORE INFO Sometimes, you might want to use the –Option parameter to set

optional properties of an alias. Valid values are None, ReadOnly, Constant, Private, and

AllScope. The default, None, sets no options. ReadOnly specifi es that the alias cannot

be changed unless you use the –Force parameter. Constant specifi es that the alias

 cannot be changed, even by using the –Force parameter. Private specifi es that the alias

is available only within the scope specifi ed by the –Scope parameter. AllScope specifi es

that the alias is available in all scopes.

You can use the alias with any applicable parameters just as you would the full
command name. If you always want to use certain startup parameters, external
utilities, or applications, you can defi ne those as well as part of the alias. To do this,
enclose the value in double quotation marks as shown in this example:

set-alias cm "c:\windows\system32\compmgmt.msc /computer=engpc57"

However, you cannot defi ne startup parameters for cmdlets in this way. For
example, you can create an alias of gs for Get-Service, but you cannot create an
alias with the following defi nition: get-service –name winrm. The workaround is to
create a function that includes the command as discussed in the “Creating and Using
 Functions” section later in this chapter.

Importing and Exporting Aliases

Normally, you save the aliases you want to use by typing the related commands into
a profi le fi le. If you create a number of aliases in a PowerShell session and want to
save those aliases, you also can use the Export-Alias cmdlet to do so. This cmdlet
exports all the aliases that are currently in use in the PowerShell console to an alias
fi le. You can export aliases as a list of comma-separated values or a list of Set-Alias
commands in a PowerShell script.

The basic syntax for Export-Alias is

export-alias –path AliasFileName

where AliasFileName is the full fi le path to the alias fi le you want to create, such as

export-alias –path myaliases.csv

The default output format is a list of comma-separated values. You can use the
–As parameter to set the output format as a script containing Set-Alias commands
as shown in this example:

export-alias –as script –path myaliases.ps1

Other parameters you can use include

 –Append, to write the output to the end of an existing fi le rather than over-
write the fi le as per the default setting

set-alias cm "c:\windows\system32\compmgmt.msc /computer=engpc57"

export-alias –path AliasFileName

export-alias –path myaliases.csv

export-alias –as script –path myaliases.ps1

 Mastering Aliases, Functions, and Objects CHAPTER 6 175

 –Force, to force overwriting an existing alias fi le if the read-only attribute is set

 –Noclobber, to prevent automatic overwriting of an existing alias fi le

 The Import-Alias cmdlet imports an alias fi le into the PowerShell console. The
basic syntax for Import-Alias is

import-alias –path AliasFileName

 where AliasFileName is the full fi le path to the alias fi le you want to import, such as

import-alias –path c:\powershell\myaliases.csv

 Use the –Force parameter to import aliases that are already defi ned and set as
read-only.

Creating and Using Functions

 Windows PowerShell functions are named sets of commands that can accept input
from the pipeline. When you call a function by its name, the related commands run
just as if you had typed them at the command line. Normally, you save functions
that you want to use frequently by typing the related commands into a profi le fi le.
You also can add functions to scripts.

Creating Functions

 To create a function, type the word function followed by a name for the function.
Type your command text, and enclose it in braces ({ }). For example, the following
command creates the getwinrm function. This function represents the “get-service
-name winrm” command:

function getwinrm {get-service -name winrm}

 The braces ({ }) create a code block that the function uses. You can now type
getwinrm instead of the command. And you can even create aliases for the
getwinrm function. For example, you can create a gr alias for the getwinrm function
using the following command:

new-alias gr getwinrm

 Because functions use code blocks, you can create functions with multiple
 commands. Functions also can use piping, redirection, and other coding techniques.
For example, you can use piping to format the output of Get-Service as shown in
this example:

function getwinrm {get-service -name winrm | format-list}

import-alias –path AliasFileName

import-alias –path c:\powershell\myaliases.csv

function getwinrm {get-service -name winrm}

new-alias gr getwinrm

function getwinrm {get-service -name winrm | format-list}

CHAPTER 6 Mastering Aliases, Functions, and Objects176

Functions are very powerful because you can defi ne parameters for them and use
the parameter names to pass in values. The basic syntax for using parameters with
functions is

function FunctionName {
 param ($Parameter1Name, $Parameter2Name, ...)
 Commands }

where FunctionName sets the name of the function, $Parameter1Name sets the
name of the fi rst parameter, $Parameter2Name sets the name of the second
 parameter, and so on. Consider the following example:

function ss {param ($status) get-service | where { $_.status -eq $status} }

 This line of code defi nes an ss function with a parameter called status. The ss
function examines all the confi gured services on the computer and uses the Where-
Object cmdlet to return a formatted list of services with the status you specify. To
return a list of all services with a status of Stopped, you type

ss –status stopped

 To return a list of all services with a status of Running, you type

ss –status running

 Because the name of the parameter is optional, you also can simply specify the
value to check, such as

ss stopped

 or

ss running

 Keep in mind that functions run within the context of their own local scope.
The items created in a function, such as variables, exist only in the function scope.
 Additionally, if a function is part of a script, the function is available only to state-
ments within that script. This means a function in a script is not available at the
 command prompt by default. When you defi ne a function in the global scope, you
can use the function in scripts, in functions, and at the command line.

 To set the scope for a function, simply prefi x the name of the function with the
desired scope. This example sets the scope of the function to global:

function global:getwinrm {get-service -name winrm}

function FunctionName {
 param ($Parameter1Name, $Parameter2Name, ...)
Commands }

function ss {param ($status) get-service | where { $_.status -eq $status} }

ss –status stopped

ss –status running

ss stopped

ss running

 Mastering Aliases, Functions, and Objects CHAPTER 6 177

Using Extended Functions

 Now that you know the basics, let’s look at the extended syntax for functions:

function $FunctionName {
 param ($Parameter1Name, $Parameter2Name, ...)
 Begin {
 <one-time, pre-processing commands>
 }
 Process{
 <commands to execute on each object>
 }
 End{
 <one-time, post-processing commands>
 }
}

 In the extended syntax, you can add Begin, Process, and End code blocks to
make a function behave exactly like a cmdlet. The Begin block is optional and used
to specify one-time preprocessing commands. Statements in the Begin block are
 executed before any objects in the pipeline are evaluated by the function. This
means no pipeline objects are available.

 The Process block is required if you want to process input. In the basic syntax,
the Process block is implied. However, when you use the other optional blocks and
want to process input, you must explicitly declare the Process block. Statements in
the Process block are executed once for each object in the pipeline.

 The End block is optional and used to specify one-time postprocessing com-
mands. Statements in the End block are executed after all objects in the pipeline are
evaluated by the function. As with the Begin block, this means no pipeline objects
are available.

 The following example uses Begin, Process, and End code blocks:

function scheck {
param ($status)
 Begin {
 Write-Warning "############### Services on $env:computername"
 }
 Process {
 get-service | where { $_.status -eq $status}
 }
 End {
 Write-Warning "##"
 }
}

function $FunctionName {
 param ($Parameter1Name, $Parameter2Name, ...)
 Begin {
 <one-time, pre-processing commands>
 }
 Process{
 <commands to execute on each object>
 }
 End{
 <one-time, post-processing commands>
 }
}

function scheck {
param ($status)
Begin {
 Write-Warning "############### Services on $env:computername"
}
Process {
 get-service | where { $_.status -eq $status}
}
End {
 Write-Warning "##"
}
}

CHAPTER 6 Mastering Aliases, Functions, and Objects178

If you defi ne this function at the prompt or use it in a script, you can return a list
of all services with a status of Stopped by typing

scheck stopped

To return a list of all services with a status of Running, you type

ss –status running

Using Filter Functions

Filters are a type of function that run on each object in the pipeline. You can think of
a fi lter as a function with all its statements in a Process block.

The basic syntax for a fi lter is

filter FilterName {
 param ($Parameter1Name, $Parameter2Name, ...)
 Commands }

where FilterName sets the name of the fi lter, $Parameter1Name sets the name of
the fi rst parameter, $Parameter2Name sets the name of the second parameter, and
so on.

The power of a fi lter is that it processes a single pipeline object at a time. This
makes a fi lter ideal for working with large amounts of data and returning an
 appropriate subset of the pipeline data. As with functions, you can specify a scope
for a fi lter. Simply prefi x the name of the function with the desired scope.

When you work with fi lters, you’ll often use the $_ automatic variable to operate
on the current object in the pipeline as shown in this example:

filter Name { $_.Name }

Here, you defi ne a fi lter that outputs the name property of any object sent to
the fi lter. For example, if you pipeline the output of Get-PSDrive to the function as
shown here:

get-psdrive | name

the fi lter returns the name of each PSDrive that is available. Because a fi lter is
 essentially a function with only a Process block, the following function works the
same as the previously defi ned fi lter:

function Name {
 Process { $_.Name }
}

filter FilterName {
 param ($Parameter1Name, $Parameter2Name, ...)
Commands }

filter Name { $_.Name }

get-psdrive | name

function Name {
 Process { $_.Name }
}

 Mastering Aliases, Functions, and Objects CHAPTER 6 179

Digging Deeper into Functions

 You can extend the function concepts we’ve discussed previously in many ways. For
example, you can set a default value for a parameter by assigning an initial value as
shown in this example:

function ss {param ($status = "stopped") get-service |
where { $_.status -eq $status} }

 Now the –Status parameter is set to Stopped by default. You can override the
default by specifying a different value.

 When you create functions, you can specify the parameter value type using any
of the data type aliases listed previously in Table 6-1. These data type aliases are
used in the same way whenever you declare a data type in PowerShell.

 In the following example, you create a function to dynamically set the
 PowerShell window size:

function set-windowsize {

param([int]$width=$host.ui.rawui.windowsize.width,
[int]$height=$host.ui.rawui.windowsize.height)

$size=New-Object System.Management.Automation.Host.Size($width,$height);

$host.ui.rawui.WindowSize=$size

}

 The function defi nes two parameters: $width and $height. Both parameters
are defi ned as having 32-bit integer values. Because of this, PowerShell expects
the parameters to be in this format when you call the function. If you pass values
in another format, PowerShell attempts to convert the values you provide to the
 correct format. If PowerShell cannot do this, an error is returned stating that the
value cannot be converted to the specifi ed type and that the input string was not in
the correct format.

 The Get-Command cmdlet lists all currently defi ned cmdlets and functions. If
you want to see only the available functions, you can fi lter the output using the
Where-Object cmdlet as shown in the following example:

get-command | where {$_.commandtype -eq "function"}

 Here, you look for command objects where CommandType is set as Function.
This lists all the functions that currently are defi ned. Add | format-list to see the
extended defi nition of each function, such as

get-command | where {$_.commandtype -eq "function"} | format-list

function ss {param ($status = "stopped") get-service |
where { $_.status -eq $status} }

function set-windowsize {

param([int]$width=$host.ui.rawui.windowsize.width,
[int]$height=$host.ui.rawui.windowsize.height)

$size=New-Object System.Management.Automation.Host.Size($width,$height);

$host.ui.rawui.WindowSize=$size

}

get-command | where {$_.commandtype -eq "function"}

get-command | where {$_.commandtype -eq "function"} | format-list

CHAPTER 6 Mastering Aliases, Functions, and Objects180

The technique of calling a function and passing parameter values directly works
great when you want to do either of the following:

 Defi ne a function at the prompt and then run the function from the prompt.

 Defi ne a function in a script and then run the function in the script.

However, this technique won’t work if you want to pass parameter values to a
function in a script from the prompt. The reason for this is that values passed to
a script are read as arguments. For example, if you save a library of functions in a
script and then want to run the functions from the prompt, you have to design the
function to understand script-passed arguments or modify the script to work with
arguments. One solution is shown in this example script:

Contents of CheckIt.ps1

function scheck {param ($status)
 Begin {
 Write-Warning "############### Services on $env:computername"
 }
 Process {
 get-service | where { $_.status -eq $status}
 }
 End {
 Write-Warning "##"
 }
}
if ($args[0] = "scheck") {scheck $args[1]}

Note that the last line of the script determines whether the Scheck function
is called. If you call the script with the fi rst argument as scheck and the second
argument as the status to check, the Scheck function is called and you get a list of
services with that status. An alternative solution is to simply set the Status parameter
to the value of the fi rst argument passed to the script, as shown in the example that
follows. You can then call the script with the fi rst argument as the status to check.
Note that the last line of the script invokes the function.

 Contents of CheckIt2.ps1

function scheck {param ($status = $args[0])
 Begin {
 Write-Warning "############### Services on $env:computername"
 }
 Process {
 get-service | where { $_.status -eq $status}
 }
 End {
 Write-Warning "##"
 }
}
scheck

function scheck {param ($status)
 Begin {
 Write-Warning "############### Services on $env:computername"
 }
 Process {
 get-service | where { $_.status -eq $status}
 }
 End {
 Write-Warning "##"
 }
}
if ($args[0] = "scheck") {scheck $args[1]}

function scheck {param ($status = $args[0])
 Begin {
 Write-Warning "############### Services on $env:computername"
 }
 Process {
 get-service | where { $_.status -eq $status}
 }
 End {
 Write-Warning "##"
 }
}
scheck

 Mastering Aliases, Functions, and Objects CHAPTER 6 181

Examining Function Defi nitions

 If desired, you can work with functions via the function: provider drive. For example,
if you set the location to the function: provider drive as shown in this example

set-location function:

 the PowerShell prompt changes to

PS Function:\>

 You can then work with any function or all functions. To list all functions by name
and defi nition, you type

get-childitem

 To list a particular function by name and defi nition, you use Get-ChildItem and
type the function name or part of the function name with wildcards, such as

get-childitem enable-psremoting
get-childitem *psremoting

 When you are fi nished working with the function: provider drive, you can return
to the fi le system drive you were using by typing set-location and the drive desig-
nator, such as

set-location c:

 Another way to work with the function: provider drive is to use the Get-Item
cmdlet to examine its defi nitions. If you do this, you don’t need to switch to the
function: provider drive. For example, regardless of which provider drive you are
working with, you can type the following command to list all functions:

get-item -path function:*

 You also can get a function by name:

get-item -path function:prompt

 Or you can get it by wildcard:

get-item -path function:pr*

Using the Built-In Functions

 Table 6-3 shows the default functions. As you can see, most of the default functions
are created to allow you to access drives and fi le paths, and the defi nition for these

set-location function:

PS Function:\>

get-childitem

get-childitem enable-psremoting
get-childitem *psremoting

set-location c:

get-item -path function:*

get-item -path function:prompt

get-item -path function:pr*

 CHAPTER 6 Mastering Aliases, Functions, and Objects182

matches the definition set in the actual function. For other functions, the definition
shows the essential command text at the heart of the function when possible.

TABLE 6-3 Default Functions

FUNCTION NAME DEFINITION PURPOSE

A:, B:, C:, D:, E:, F:, G:,
H:, I:, J:, K:, L:, M:, N:,
O:, P:, Q:, R:, S:, T:, U:,
V:, W:, X:, Y:, Z:

Set-Location DriveLetter,
where DriveLetter is the
letter of the drive you
want to access.

Allows you to change to
a particular drive letter.
Thus, rather than having
to type Set-Location C:,
you can simply type C:.

CD.. Set-Location .. Allows you to go back
one directory level. Thus,
rather than having to type
Set-Location .., you can
simply type CD...

CD\ Set-Location \ Allows you to go to
the root directory of
the current drive. Thus,
rather than having to type
Set-Location \, you can
simply type CD\.

Clear-Host $space = New-Object System.
Management. Automation.
Host. BufferCell

$space.Character = ‘ ‘

Clears the history buffer
in the PowerShell console.
Thus, rather than having
to invoke the host run
space and clear the buffer,
you can simply type
Clear-Host.

Disable-PSRemoting Disable-PSSessionConfiguration
* –force:$force

Disables the PowerShell
remoting capabilities.
Thus, rather than having
to try several approaches
to disabling remoting,
you can simply type
Disable-PSRemoting.

Enable-PSRemoting Enable-PSSessionConfiguration
* –force:$force

Enables the PowerShell
remoting capabilities.
Thus, rather than having
to try several approaches
to enabling remoting,
you can simply type
Enable-PSRemoting.

 Mastering Aliases, Functions, and Objects CHAPTER 6 183

TABLE 6-3 Default Functions

FUNCTION NAME DEFINITION PURPOSE

Help Get-help | More Gets the help text for a
cmdlet and pages it one
screen at a time. Thus,
rather than having to type
get-help CmdletName |

More, you can simply type
Help CmdletName.

Mkdir New-Item –path Path –name
Name –type directory

Creates a directory with
a specified name along
a specified path. Thus,
rather than having to
use New-Item to create a
directory in a named path,
you can simply type mkdir

DirName.

More | More Pages file contents or out-
put one screen at a time.
Thus, rather than having
to type CommandText |
More, you can simply type
More CommandText.

Prompt $(if (test-path variable:/
PSDebugContext)
{ ‘[DBG]: ‘ } else { ‘’ }) +
‘PS ‘ + $(Get-Location) + $(if
($nestedpromptlevel –ge 1)
{ ‘>>’ }) + ‘> ‘

Displays the PowerShell
prompt. By default, the
prompt displays PS, a
space, and then the cur-
rent directory. The prompt
changes to >> when you
do not terminate a line
properly and PowerShell
is looking for more input
to complete the command
entry.

TabExpansion * Enables tab expansion of
command and parameter
names. When you are
 typing part of a name
value, press Tab to expand.

CHAPTER 6 Mastering Aliases, Functions, and Objects184

Practice using these functions because they provide handy shortcuts for many
common tasks, especially the Prompt and TabExpansion functions. By default,
the prompt displays PS, a space, and then the current directory. Also, the prompt
changes to >> when you do not terminate a line properly and PowerShell is looking
for more input to complete the command entry. When you are in debugging mode,
the prompt changes to [DBG]:.

You can create your own Prompt function. If you do, your Prompt function
simply overwrites and takes the place of the default prompt function. For example, if
you want to the prompt to display the date instead of the current location, you can
defi ne the Prompt function as

function prompt {"$(get-date)> "}

Or to display the computer name, defi ne the prompt as

function prompt {"PS [$env:computername]> "}

To maintain the original behavior of the prompt, copy the original defi nition and
then modify it to meet your needs. The original prompt is created using the follow-
ing function entered as a single line of code:

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + 'PS ' + $(Get-Location)
+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

Typically, you’ll want to replace the bold text with the desired value. For example,
to display the date, you enter the following defi nition as a single line:

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + "$(get-date)> "
+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

To display the computer name, you enter the following defi nition as a single line:

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + "PS [$env:computername]> "
+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

While the Prompt function is a nice extra, the TabExpansion function is one you
won’t be able to live without once you start using it. The TabExpansion function

function prompt {"$(get-date)> "}

function prompt {"PS [$env:computername]> "}

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + 'PS ' + $(Get-Location)

+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + "$(get-date)> "
+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

function prompt {
$(if (test-path variable:/PSDebugContext) { '[DBG]: ' }
else { '' }) + "PS [$env:computername]> "
+ $(if ($nestedpromptlevel -ge 1) { '>>' }) + '> '
}

 Mastering Aliases, Functions, and Objects CHAPTER 6 185

allows you to complete cmdlet names, parameter names, and even parameter
 values using the Tab key. Here’s how it works:

 When you are typing a cmdlet name, type the first few letters of the name
and then press the Tab key to cycle through matching cmdlet names in
alphabetical order. For example, if you know the cmdlet you want to use
begins with Get-, you can type Get- and then press Tab to cycle through
the matching cmdlets. Here, Get-Acl is listed first, followed by Get-Alias,
 Get-AuthenticateSignature, and so on. Similarly, if you know the cmdlet verb
is Get and the cmdlet noun begins with C, you can type Get-C and then
press Tab to cycle through possible values. A little-known secret is that you
can press Shift+Tab to go through the values backwards, such as when you
know the value you are looking for is later in the alphabet.

 After you type a cmdlet name, you can use tab expansion to select parameter
names as well. If you don’t know what parameter to use, type a hyphen (-)
and then press Tab to cycle through all available parameter names. If you
know a parameter begins with a certain letter, type a hyphen (-) followed by
the letters you know and then press Tab. Again, you can press Shift+Tab to
go through the values backward.

NOTE Pressing Tab on a blank line inserts the tab character. If you press Tab when a

parameter value is expected, PowerShell cycles through file and folder names in the

current directory.

Working with Objects

Every action you take in Windows PowerShell occurs within the context of objects.
Objects are the fundamental unit in object-oriented programming. Programming
languages that follow object-oriented concepts describe the interaction among
objects, and PowerShell uses objects in exactly the same way.

Object Essentials

In Windows PowerShell, objects do the real work. As data moves from one command
to the next, it moves as it does within objects. Essentially, this means that objects are
simply collections of data that represent items in defined namespaces.

All objects have a type, state, and behavior. The type provides details about what
the object represents. For example, an object that represents a system process is a
Process object. The state of an object pertains to data elements and their associated
values. Everything the object knows about these elements and values describes the
state of the object. Data elements associated with objects are stored in properties.

The behavior of an object depends on the actions the object can perform on
the item that the object represents. In object-oriented terminology, this construct
is called a method. A method belongs to the object class it is a member of, and you

CHAPTER 6 Mastering Aliases, Functions, and Objects186

use a method when you need to perform a specifi c action on an object. For example,
the Process object includes a method for stopping the process. You can use this
method to halt execution of the process that the object represents.

Putting this together, you can see that the state of an object depends on the
things the object knows, and the behavior of the object depends on the actions
the object can perform. Objects encapsulate properties and related methods into a
single identifi able unit. Therefore, objects are easy to reuse, update, and maintain.

Object classes encapsulate objects. A single class can be used to instantiate
multiple objects. This means that you can have many active objects or instances of a
class. By encapsulating objects within a class structure, you can group sets of objects
by type. For example, when you type get-process at the PowerShell prompt,
Power Shell returns a collection of objects representing all processing that are run-
ning on the computer. Although all the objects are returned together in a single
collection, each object is separate, retaining its own states and behaviors.

PowerShell supports several dozen object types. When you combine commands
in a pipeline, the commands pass information to each other as objects. When the fi rst
command runs, it sends one or more objects of a particular class along the pipeline
to the second command. The second command receives the collection of objects
from the fi rst command, processes the objects, and then either displays output or
passes new or modifi ed objects to the next command in the pipeline. This continues
until all commands in the pipeline run and the fi nal command’s output is displayed.

You can examine the properties and methods of any object by sending the out-
put through the Get-Member cmdlet. For example, system processes and services
are represented by the Process and Service objects, respectively. To determine the
properties and methods of a Process object, you type get-process | get-member.
To determine the properties and methods of a Service object, you type get-service |

get-member. In both instances, the pipe character (|) sends the output of the fi rst
cmdlet to the Get-Member cmdlet, and Get-Member shows you the formal type of
the object class and a complete listing of its members, as shown in the following
example and sample output:

get-service | get-member

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

Disposed Event System.EventHandler Disposed

Close Method System.Void Close()

. . .

CanPauseAndContinue Property System.Boolean CanPauseAndCo

. . .

Status Property System.ServiceProcess.Service

get-service | get-member

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition

---- ---------- ----------

Name AliasProperty Name = ServiceName

Disposed Event System.EventHandler Disposed

Close Method System.Void Close()

. . .

CanPauseAndContinue Property System.Boolean CanPauseAndCo

. . .

Status Property System.ServiceProcess.Service

 Mastering Aliases, Functions, and Objects CHAPTER 6 187

 TIP By default, the Get-Member cmdlet does not show you the static methods and

static properties of object classes. To get the static members of an object class, type

get-member –static. For example, to get the static members of the ServiceProcess

object, you’d enter get-service | get-member –static.

 In the output, note that each facet of the Service object is listed by member
type. You can make better sense of the list of available information when you fi lter
for elements you want to see by adding the –MemberType parameter. The allowed
values of –MemberType include

 AliasProperty, CodeProperty, NoteProperty, ParameterizedProperty,
 Property, PropertySet, ScriptProperty, CodeMethod, MemberSet, Method,
and ScriptMethod, for examining elements of a particular type

 Properties, for examining all property-related elements

 Methods, for examining all method-related elements

 All, for examining all properties and methods (the default)

 When you examine an object using Get-Member, note the alias properties.
Aliases to properties work the same as other aliases. They’re friendly names that
you can use as shortcuts when you are working with an object. Whereas Service
objects have only one alias property (Name), most well-known objects have several
alias properties. For example, Process objects have the alias properties shown in the
 following example and sample output:

get-process | get-member

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

Handles AliasProperty Handles = Handlecount

Name AliasProperty Name = ProcessName

NPM AliasProperty NPM = NonpagedSystemMemory

PM AliasProperty PM = PagedMemorySize

VM AliasProperty VM = VirtualMemorySize

WS AliasProperty WS = WorkingSet

 And these aliases are displayed when you list running processes, as shown in the
following example and sample output:

get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1296 3844 51 0.00 3004 acrotray

 139 4 2560 7344 75 1292 AlertService

 573 14 14680 11028 120 7.41 2764 aolsoftware

 97 4 2872 4476 53 1512 AppleMobil...

get-process | get-member

 TypeName: System.Diagnostics.Process

Name MemberType Definition

---- ---------- ----------

Handles AliasProperty Handles = Handlecount

Name AliasProperty Name = ProcessName

NPM AliasProperty NPM = NonpagedSystemMemory

PM AliasProperty PM = PagedMemorySize

VM AliasProperty VM = VirtualMemorySize

WS AliasProperty WS = WorkingSet

get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 52 3 1296 3844 51 0.00 3004 acrotray

 139 4 2560 7344 75 1292 AlertService

 573 14 14680 11028 120 7.41 2764 aolsoftware

 97 4 2872 4476 53 1512 AppleMobil...

CHAPTER 6 Mastering Aliases, Functions, and Objects188

When you type get-process | get-member and see that Process objects have
dozens of other properties not listed, you might wonder what happened to these
other properties and why they aren’t listed. This occurs because PowerShell shows
only streamlined views of well-known objects as part of the standard output.
 Typically, this output includes only the most important properties of an object.

PowerShell determines how to display an object of a particular type by using
information stored in XML fi les that have names ending in .format.ps1xml. The
 formatting defi nitions for many well-known objects are in the types.ps1xml fi le. This
fi le is stored in the $pshome directory.

The properties you don’t see are still part of the object, and you have full access to
them. For example, if you type get-process winlogon | format-list –property *, you
get complete details on every property of the Winlogon process by name and value.

Object Methods and Properties

Some methods and properties relate only to actual instances of an object, and this
is why they are called instance methods and instance properties. The term instance is
simply another word for object.

Often you will want to reference the methods and properties of objects through a vari-
able in which the object is stored. To see how this works, consider the following example:

$myString = "THIS IS A TEST!"

Here, you store a character string in a variable named $myString. In PowerShell,
the string is represented as a String object. String objects have a Length property
that stores the length of the string. Therefore, you can determine the length of the
string created previously by typing the following command:

$myString.Length

In this example, the length of the string is 15 characters, so the output is 15.

Although String objects have only one property, they have a number of methods,
including ToUpper() and ToLower(). You use the ToUpper() method to display all
the characters in the string in uppercase letters. You use the ToLower() method to
display all the characters in the string in lowercase letters. For example, to change
the previously created string to “this is a test!”, you type the following command:

$myString.ToLower()

From these examples, you can see that you access a property of an object
by placing a dot between the variable name that represents the object and the
 property name as shown here:

$ObjectName.PropertyName
$ObjectName.PropertyName = Value

$myString = "THIS IS A TEST!"

$myString.Length

$myString.ToLower()

$ObjectName.PropertyName
$ObjectName.PropertyName = Value

 Mastering Aliases, Functions, and Objects CHAPTER 6 189

 And you can see that you access a method of an object by placing a dot between
the variable name that represents the object and the method name, such as

$ObjectName.MethodName()

 Because methods perform actions on objects, you often need to pass parameter
values in the method call. The syntax for passing parameters in a method call is

$ObjectName.MethodName(parameter1, parameter2, …)

 So far the techniques we’ve discussed for working with methods and properties are
for actual instances of an object. However, you won’t always be working with a tangible
instance of an object. Sometimes, you’ll want to work directly with the static methods
and static properties that apply to a particular .NET Framework class type as a whole.

 The .NET Framework includes a wide range of class types. Generally, .NET Frame-
work class names are always enclosed in brackets. Examples of class type names
include [System.Datetime], for working with dates and times, and [System.Diagnostics
.Process], for working with system processes. However, PowerShell automatically
prepends System. to type names, so you can also use [Datetime] for working with
dates and times and [Diagnostics.Process] for working with system processes.

 Static methods and static properties of a .NET Framework class are always
available when you are working with an object class. However, if you try to display
them with the Get-Member cmdlet, you won’t see them unless you use the –Static
parameter as well, such as

[System.Datetime] | get-member -Static

 You access a static property of a .NET Framework class by placing two colon
 characters (::) between the bracketed class name and the property name as shown here:

[ClassName]::PropertyName
[ClassName]::PropertyName = Value

 In this example, you use a static property of the [System.Datetime] class to
 display the current date and time:

[System.Datetime]::Now

Monday, February 15, 2010 11:05:22 PM

 You access a static method of a .NET Framework class by placing two colon
 characters (::) between the bracketed class name and the method name, such as

[ClassName]::MethodName()

$ObjectName.MethodName()

$ObjectName.MethodName(parameter1, parameter2, …)

[System.Datetime] | get-member -Static

[ClassName]::PropertyName
[ClassName]::PropertyName = Value

[System.Datetime]::Now

Monday, February 15, 2010 11:05:22 PM

[ClassName]::MethodName()

CHAPTER 6 Mastering Aliases, Functions, and Objects190

The syntax for passing parameters in a call to a static method is

[ClassName]::MethodName(parameter1, parameter2, …)

In this example, you use a static method of the [System.Diagnostics.Process] class
to display information about a process:

[System.Diagnostics.Process]::GetProcessById(0)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 24 0 0 Idle

Object Types

By default, all object types that are used by PowerShell are defi ned in .ps1xml fi les in
the $pshome directory. The default formatting and type fi les include the following:

 Certifi cate.Format.ps1xml Provides formatting guidelines for certifi cate
objects and X.509 certifi cates

 Diagnostics.Format.ps1xml Provides formatting guidelines for objects
created when you are working with performance counters and diagnostics in
PowerShell

 DotNetTypes.Format.ps1xml Provides formatting guidelines for
.NET Framework objects not covered in other formatting fi les, including
 CultureInfo, FileVersionInfo, and EventLogEntry objects

 FileSystem.Format.ps1xml Provides formatting guidelines for fi le system
objects

 GetEvent.Types.ps1xml Provides formatting guidelines for event log
 confi guration, event log records, and performance counters

 Help.Format.ps1xml Provides formatting guidelines for the views
 PowerShell uses to display help fi le content

 PowerShellCore.Format.ps1xml Provides formatting guidelines for
 objects that are created by the PowerShell core cmdlets

 PowerShellTrace.Format.ps1xml Provides formatting guidelines for
PSTraceSource objects generated when you are performing traces in
 PowerShell

 Registry.Format.ps1xml Provides formatting guidelines for Registry
 objects

 Types.ps1xml Provides formatting guidelines for System objects

 WSMan.Format.ps1xml Provides formatting guidelines for objects
 created when you are working with WS Management confi gurations in
 PowerShell

[ClassName]::MethodName(parameter1, parameter2, …)

[System.Diagnostics.Process]::GetProcessById(0)

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 24 0 0 Idle

 Mastering Aliases, Functions, and Objects CHAPTER 6 191

 PowerShell accomplishes automatic typing by using a common object that has
the capability to state its type dynamically, add members dynamically, and interact
with other objects through a consistent abstraction layer. This object is the PSObject.
The PSObject can encapsulate any base object, whether it is a system object, a WMI
object, a Component Object Model (COM) object, or an Active Directory Service
Interfaces (ADSI) object.

 By acting as a wrapper for an existing base object, the PSObject can be used
to access adapted views of a base object or to extend a base object. Although an
adapted view of a base object exposes only members that are directly accessible,
you can access alternate views of a base object, and those alternate views can
provide access to the extended members of a base object. Available views for base
objects include the following:

 PSBase Used to access the original properties of the object without
 extension or adaptation

 PSAdapted Used to access an adapted view of the object

 PSExtended Used to access the extended properties and methods
of the object that were added in the Types.ps1xml fi les or by using the
 Add- Member cmdlet

 PSObject Used to access the adapter that converts the base object to a
PSObject

 PSTypeNames Used to access a list of types that describe the object

 By default, PowerShell returns information only from the PSObject, PSExtended,
and PSTypeNames views. However, you can use dot notation to access alternate
views. In the following example, you obtain a Win32_Process object representing
the winlogon.exe process:

$pr = Get-WmiObject Win32_Process | where-object { $_.ProcessName -eq
"winlogon.exe" }

 If you then type $pr at the PowerShell prompt, you see all the information for
this process from the PSObject, PSExtended, and PSTypeNames views. You can then
access the PSBase view to expose the members of the base object as shown in this
example:

$pr.PSBase.Properties

 Because there might be times when you want to extend an object yourself, you
can do this using a custom Types.ps1xml fi le or by using the Add-Member cmdlet.
The three most common extensions you’ll want to use are

 ScriptProperty Allows you to add properties to types, including those that
are based on a calculation

 AliasProperty Allows you to defi ne an alias for a property

 ScriptMethod Allows you to defi ne an action to take on an object

$pr = Get-WmiObject Win32_Process | where-object { $_.ProcessName -eq
"winlogon.exe" }

$pr.PSBase.Properties

CHAPTER 6 Mastering Aliases, Functions, and Objects192

In custom Types.ps1xml fi les, you can defi ne these extensions using XML
 elements, and there are many examples available in the $pshome directory. These
extensions also can be added dynamically at the prompt or in your scripts. For
example, a ScriptProperty is a type of object member that uses a block of code to
process or extract information related to an object. The basic syntax is

$ObjectName | add-member -membertype scriptproperty -name Name -value
{CodeBlock}

Because the –Name and –Value parameters are position sensitive, you don’t have
to specify them explicitly. Knowing this, consider the following example and sample
output:

$proc = get-process powershell;

$proc | add-member -Type scriptproperty "UpTime" {return ((date) -
($this.starttime))};

$proc | select Name, @{name='Uptime'; Expression={"{0:n0}" -f
$_.UpTime.TotalMinutes}};

Name Uptime

---- ------

powershell 242

Here, you obtain a process object for any Powershell.exe processes running
on the computer. You then use the Add-Member cmdlet to extend the standard
 process object by adding a ScriptProperty. The script block defi ned in the Script-
Property is used to calculate the time that a process has been running. Then you
get the process object and format its output to include the process name and new
Uptime property. Using a regular expression, you convert the output value of the
Uptime property to a value in minutes. The result is as shown.

What you don’t see happening here is that the fi rst time you assign a value to
$proc, you are adding a collection of process objects. You then generate a second
collection of process objects because you use the Add-Member cmdlet to wrap the
original Process objects in a new PSObject instance that includes the new property
you’ve defi ned.

While a ScriptProperty extends an object, an AliasProperty simply makes it easier
to work with an object. To see how, let’s access the C: drive using the Get-PSDrive
cmdlet and then create a new PSDriveInfo object so that we can access information
about the C: drive. Here’s an example:

$myDrive = get-psdrive C
$myDriveInfo = New-Object System.IO.DriveInfo $myDrive

$ObjectName | add-member -membertype scriptproperty -name Name -value
{CodeBlock}

$proc = get-process powershell;

$proc | add-member -Type scriptproperty "UpTime" {return ((date) -
($this.starttime))};

$proc | select Name, @{name='Uptime'; Expression={"{0:n0}" -f
$_.UpTime.TotalMinutes}};

Name Uptime

---- ------

powershell 242

$myDrive = get-psdrive C
$myDriveInfo = New-Object System.IO.DriveInfo $myDrive

 Mastering Aliases, Functions, and Objects CHAPTER 6 193

 Now that you have an object you can work with, you can display information
about the C: drive simply by typing $myDriveInfo. The output you see provides
 information about the drive, its status, its size, and its free space, and it will be
 similar to the following:

Name : C:\
DriveType : Fixed
DriveFormat : NTFS
IsReady : True
AvailableFreeSpace : 302748798976
TotalFreeSpace : 302748798976
TotalSize : 490580373504
RootDirectory : C:\
VolumeLabel :

 Although the default format is a list, you can also view the information in
table format, such as when you are working with multiple drives. When you type
$ myDriveInfo | format-table –property *, the output you get isn’t pretty (unless
you have a very wide console window). To clean up the output, you might want
to create aliases for properties, such as AvailableFreeSpace, TotalFreeSpace, and
RootDirectory. You can do this using the Add-Member cmdlet as well. The basic
syntax is

$ObjectName | add-member -membertype aliasproperty -name AliasName -value
PropertyName

 where ObjectName is the name of the object you are working with, AliasName is the
new alias for the property, and PropertyName is the original name of the property,
such as

$myDriveInfo | add-member -membertype aliasproperty -name Free -value
AvailableFreeSpace

$myDriveInfo | add-member -membertype aliasproperty -name Format -value
DriveFormat

 You can access an alias property as you would any other property. For example,
to display the value of the AvailableFreeSpace property, you can type either

$myDriveInfo.AvailableFreeSpace

 or

$myDriveInfo.Free

Name : C:\
DriveType : Fixed
DriveFormat : NTFS
IsReady : True
AvailableFreeSpace : 302748798976
TotalFreeSpace : 302748798976
TotalSize : 490580373504
RootDirectory : C:\
VolumeLabel :

$ObjectName | add-member -membertype aliasproperty -name AliasName -value
PropertyName

$myDriveInfo | add-member -membertype aliasproperty -name Free -value
AvailableFreeSpace

$myDriveInfo | add-member -membertype aliasproperty -name Format -value
DriveFormat

$myDriveInfo.AvailableFreeSpace

$myDriveInfo.Free

CHAPTER 6 Mastering Aliases, Functions, and Objects194

You can use alias properties in formatted output as well. An example is shown in
the following command and sample output:

$myDriveInfo | format-table –property Name, Free, Format

Name Free Format
---- ---- ------
C:\ 302748483584 NTFS

You use ScriptMethod extensions to defi ne additional methods for an object. The
basic syntax is

$ObjectName | add-member -membertype scriptmethod -name Name
 -value {CodeBlock}

Because the –Name and –Value parameters are position sensitive, you don’t have
to specify them explicitly. Knowing this, consider the following example:

$myDrive = get-psdrive C

$myDrive | add-member -membertype scriptmethod -name Remove
 -value { $force = [bool] $args[0]
 if ($force) {$this | Remove-PSDrive }
 else {$this | Remove-PSDrive -Confirm}
}

Here you defi ne a Remote method for a PSDrive object. If you call the method
without passing any argument values, PowerShell prompts you to confi rm that
you want to remove the drive from the current session. If you call the method and
pass $true or 0 (zero) as the fi rst argument, PowerShell removes the drive from the
 current session without requiring confi rmation.

Digging Deeper into Objects

To dig a bit deeper into objects, let’s look at the $host object. As discussed in
the “Confi guring Windows PowerShell Console Properties” section in Chapter 1,
“ Introducing Windows PowerShell,” you can use the PowerShell console’s Properties
dialog box to specify the options, fonts, layouts, and colors to use. The $host object
also gives you access to the underlying user interface, which can be either the
PowerShell console or the PowerShell application.

To view the current settings of the $host object, type the following command:

$host.ui.rawui | format-list –property *

$myDriveInfo | format-table –property Name, Free, Format

Name Free Format
---- ---- ------
C:\ 302748483584 NTFS

$ObjectName | add-member -membertype scriptmethod -name Name
 -value {CodeBlock}

$myDrive = get-psdrive C

$myDrive | add-member -membertype scriptmethod -name Remove
 -value { $force = [bool] $args[0]
 if ($force) {$this | Remove-PSDrive }
 else {$this | Remove-PSDrive -Confirm}
}

 Mastering Aliases, Functions, and Objects CHAPTER 6 195

 The output you see will be similar to the following:

ForegroundColor : DarkYellow
BackgroundColor : DarkMagenta
CursorPosition : 0,1050
WindowPosition : 0,1001
CursorSize : 25
BufferSize : 120,3000
WindowSize : 120,50
MaxWindowSize : 120,95
MaxPhysicalWindowSize : 240,95
eyAvailable : False
WindowTitle : Windows PowerShell V2

 In the output, you see a number of properties, including the following:

 ForegroundColor, which sets the color of the prompt and text

 BackgroundColor, which sets the background color of the window

 WindowTitle, which sets the name of the PowerShell window

 To work with the PowerShell window, you must obtain a reference to the $host
object. The easiest way to do this is to store the $host object in a variable, such as

$myHostWin = $host.ui.rawui

 After you have a reference to an object, you can work with the object through
the available properties and methods. You can set the foreground or background
color to any of the following default color values:

 Black, DarkBlue, DarkGreen, DarkCyan

 DarkRed, DarkMagenta, DarkYellow, Gray

 DarkGray, Blue, Green, Cyan

 Red, Magenta, Yellow, White

 To do so, reference the host window object with the property name and the
desired value, such as

$myHostWin.ForegroundColor = "White"

 or

$myHostWin.BackgroundColor = "DarkGray"

 Similarly, you can use the WindowTitle property to specify the title for the
 window. Here’s an example:

$myHostWin.WindowTitle = "PowerShell on $env.computername"

ForegroundColor : DarkYellow
BackgroundColor : DarkMagenta
CursorPosition : 0,1050
WindowPosition : 0,1001
CursorSize : 25
BufferSize : 120,3000
WindowSize : 120,50
MaxWindowSize : 120,95
MaxPhysicalWindowSize : 240,95
eyAvailable : False
WindowTitle : Windows PowerShell V2

$myHostWin = $host.ui.rawui

$myHostWin.ForegroundColor = "White"

$myHostWin.BackgroundColor = "DarkGray"

$myHostWin.WindowTitle = "PowerShell on $env.computername"

CHAPTER 6 Mastering Aliases, Functions, and Objects196

Here, you set the window title to a value based on the computer name. Thus, if
you are logged on to TechPC32, the window title is set to

PowerShell on TechPC32

 Take a look back at the output values for the properties of the $host object.
Several of properties have values separated by commas. This tells you the value is
an array of subproperties. To view the subproperties of a property, you can examine
that property separately and format the output as a list. For example, to examine
the subproperties of CursorPosition, you can type the following command:

$host.ui.rawui.CursorPosition | format-list –property *

 The output will look similar to the following:

X : 0
Y : 2999

 This tells you the CursorPosition property has two subproperties: X and Y. You
reference subproperties of properties by extending the dot notation as shown in
these examples:

$host.ui.rawui.CursorPosition.X

 or

$host.ui.rawui.CursorPosition.Y

 If you continue examining subproperties of properties, you’ll fi nd both Cursor-
Position and WindowPosition have X and Y subproperties. You’ll also fi nd that
 BufferSize, WindowSize, MaxWindowSize, and MaxPhysicalWindowSize have Width
and Height properties.

 After you know what the subproperties are, you can examine their values in the
same way you examine the values of standard properties. However, in this case the
subproperties cannot be set directly; you must create an instance of the $host object
using the New-Object cmdlet and then modify the properties of the object instance.

 This means you must fi rst get a reference to the $host object as shown here:

$myHost = $host.ui.rawui

 Then you create a new object instance and set the desired subproperties on the
new instance as shown here:

$myHostWindowSize = New-Object
System.Management.Automation.Host.Size(150,100)

PowerShell on TechPC32

$host.ui.rawui.CursorPosition | format-list –property *

X : 0
Y : 2999

$host.ui.rawui.CursorPosition.X

$host.ui.rawui.CursorPosition.Y

$myHost = $host.ui.rawui

$myHostWindowSize = New-Object
System.Management.Automation.Host.Size(150,100)

 Mastering Aliases, Functions, and Objects CHAPTER 6 197

 In this example, you dynamically set the host window size. The fi rst value passed
is the desired width. The second value passed is the desired height.

Working with COM and .NET Framework Objects

 The Component Object Model (COM) and the .NET Framework are two object
 models you’ll work with frequently in PowerShell. Although many applications
 provide scripting and administrative objects through COM, .NET Framework and
even PowerShell cmdlets are becoming increasingly prevalent.

Creating and Using COM Objects

 You can create instances of COM objects using the New-Object cmdlet. The basic
syntax is

New-Object [-Set AssocArray] [-Strict] [-ComObject] String

 When creating the object, set the –ComObject parameter to the object’s
 programmatic identifi er (ProgID). Most well-known COM objects can be used within
PowerShell, including those for Windows Script Host (WSH). The following example
creates a shortcut on your desktop:

$WshShell = New-Object -ComObject WScript.Shell
$scut = $WshShell.CreateShortcut("$Home\Desktop\PowerShellHome.lnk")
$scut.TargetPath = $PSHome
$scut.Save()

 This shortcut is called PowerShellHome, and it links to the $PSHome directory.

 TIP After you’ve attached to a COM, you can use tab expansion to view available

options. For example, if $a is your object, type $a. and then press Tab or Shift+Tab to

browse available methods and properties.

 Beyond WSH, there are many other COM objects you can use. Table 6-4 lists
some of these by their ProgID.

 TABLE 6-4 Common COM Objects for Use with Windows PowerShell

 PROGID DESCRIPTION

 Access.Application Accesses Microsoft Offi ce Access

 CEnroll.Cenroll Accesses certifi cate enrollment services

 Excel.Application Accesses Microsoft Offi ce Excel

 Excel.Sheet Accesses worksheets in Excel

 HNetCfg.FwMgr Accesses Windows Firewall

New-Object [-Set AssocArray] [-Strict] [-ComObject] String

$WshShell = New-Object -ComObject WScript.Shell
$scut = $WshShell.CreateShortcut("$Home\Desktop\PowerShellHome.lnk")
$scut.TargetPath = $PSHome
$scut.Save()

 CHAPTER 6 Mastering Aliases, Functions, and Objects198

TABLE 6-4 Common COM Objects for Use with Windows PowerShell

PROGID DESCRIPTION

InternetExplorer.Application Accesses Internet Explorer

MAPI.Session Accesses Messaging Application Programming
Interface (MAPI) sessions

Messenger.MessengerApp Accesses Windows Messenger

Microsoft.Update.AutoUpdate Accesses the autoupdate schedule for Microsoft
Update

Microsoft.Update.Installer Allows you to install updates from Microsoft
Update

Microsoft.Update.Searches Allows you to search for updates from Microsoft
Update

Microsoft.Update.Session Accesses the update history for Microsoft Update

Microsoft.Update.SystemInfo Accesses system information for Microsoft
 Update

Outlook.Application Accesses Microsoft Office Outlook

OutlookExpress.MessageList Allows for automation of e-mail in Microsoft
 Office Outlook Express

PowerPoint.Application Accesses Microsoft Office PowerPoint

Publisher.Application Accesses Microsoft Office Publisher

SAPI.SpVoice Accesses the Microsoft Speech application
 programming interface (API)

Scripting.FileSystemObject Accesses the computer’s file system

SharePoint.OpenDocuments Accesses Microsoft SharePoint Services

Shell.Application Accesses the Windows Explorer shell

Shell.LocalMachine Accesses information about the Windows shell
on the local computer

SQLDMO.SQLServer Accesses the management features of Microsoft
SQL Server

WMPlayer.OCX Accesses Windows Media Player

Word.Application Accesses Microsoft Office Word

Word.Document Accesses documents in Word

To show you how easy it is to work with COM objects, I’ll work through a series of
basic examples with Windows Explorer, Internet Explorer, and Excel. The following

 Mastering Aliases, Functions, and Objects CHAPTER 6 199

example creates an instance of the Windows Explorer shell and then uses its
Windows() method to display the location name of all open instances of Windows
Explorer and Internet Explorer:

$shell = new-object -comobject shell.application
$shell.windows() | select-object locationname

Data

Computer

Network

Robert Stanek's Bugville Critters
Robert Stanek – Ruin Mist: The Lost Ages
Windows Nation: Home of Technology Author William Stanek

 By piping the output to Select-Object LocationName, you display the value of
the LocationName property for each shell object. Windows Explorer windows are
listed by name or folder, such as Computer or Network. Internet Explorer windows
are listed by Web page title. With Internet Explorer 7 and later, you get a listing for
each page opened in a tabbed window as well. You get details about both Windows
Explorer and Internet Explorer because both applications use the Windows Explorer
shell.

 If you want to know all the properties available for each shell object, pipe the
output to Select-Object without specifying properties to display, as shown in this
example and sample output:

$shell = new-object -comobject shell.application
$shell.windows() | select-object

Application : System.__ComObject

Parent : System.__ComObject

Container :

Document : mshtml.HTMLDocumentClass

TopLevelContainer : True

Type : HTML Document

Left : 959

Top : 1

Width : 961

Height : 1169

LocationName : Windows Nation: Home of Tech Author William Stanek

LocationURL : http://www.williamstanek.com/

Busy : False

Name : Windows Internet Explorer

HWND : 854818

FullName : C:\Program Files\Internet Explorer\iexplore.exe

Path : C:\Program Files\Internet Explorer\

Visible : True

$shell = new-object -comobject shell.application
$shell.windows() | select-object locationname

Data

Computer

Network

Robert Stanek's Bugville Critters
Robert Stanek – Ruin Mist: The Lost Ages
Windows Nation: Home of Technology Author William Stanek

$shell = new-object -comobject shell.application
$shell.windows() | select-object

Application : System.__ComObject

Parent : System.__ComObject

Container :

Document : mshtml.HTMLDocumentClass

TopLevelContainer : True

Type : HTML Document

Left : 959

Top : 1

Width : 961

Height : 1169

LocationName : Windows Nation: Home of Tech Author William Stanek

LocationURL : http://www.williamstanek.com/

Busy : False

Name : Windows Internet Explorer

HWND : 854818

FullName : C:\Program Files\Internet Explorer\iexplore.exe

Path : C:\Program Files\Internet Explorer\

Visible : True

CHAPTER 6 Mastering Aliases, Functions, and Objects200

StatusBar : True

StatusText : Done

ToolBar : 1

MenuBar : True

FullScreen : False

ReadyState : 4

Offline : False

Silent : False

RegisterAsBrowser : False

RegisterAsDropTarget : True

TheaterMode : False

AddressBar : True

Resizable : True

REAL WORLD Some COM objects have a .NET Framework wrapper that connects

them to the .NET Framework. Because the behavior of the wrapper might be different

from the behavior of the normal COM object, New-Object has a –Strict parameter

to warn you about wrappers. When you use this fl ag, PowerShell displays a warning

 message to tell you that you are not working with a standard COM object. The COM

object is still created, however.

The following example opens Internet Explorer to www.williamstanek.com:

$iexp = new-object –comobject "InternetExplorer.Application"
$iexp.navigate("www.williamstanek.com")
$iexp.visible = $true

 Here, you create a new COM object for Internet Explorer. The new object
has the same properties as those for the shell window listed previously. You use
the Navigate() method to set the location to browse and the Visible property
to display the window. To see a list of all methods and properties you can work
with, enter the example and then type $iexp | get-member. You can call any
method listed as shown in the example. You can modify properties that you can
get and set.

 The following example accesses the Microsoft Speech API and talks to you:

$v = new-object -comobject "SAPI.SPVoice"
$v.speak("Well, hello there. How are you?")

 Here, you create a new COM object for the Speech API. You use the Speak()
 method to say something. To see a list of all methods and properties you can work
with, enter the example and then enter $v | get-member. You can call any method
listed as shown in the example. You can modify any property that you can get
and set.

StatusBar : True

StatusText : Done

ToolBar : 1

MenuBar : True

FullScreen : False

ReadyState : 4

Offline : False

Silent : False

RegisterAsBrowser : False

RegisterAsDropTarget : True

TheaterMode : False

AddressBar : True

Resizable : True

$iexp = new-object –comobject "InternetExplorer.Application"
$iexp.navigate("www.williamstanek.com")
$iexp.visible = $true

$v = new-object -comobject "SAPI.SPVoice"
$v.speak("Well, hello there. How are you?")

 Mastering Aliases, Functions, and Objects CHAPTER 6 201

 The following example works with Microsoft Excel:

$a = New-Object -comobject "Excel.Application"
$a.Visible = $True
$wb = $a.workbooks.add()
$ws = $wb.worksheets.item(1)

$ws.cells.item(1,1) = "Computer Name"
$ws.cells.item(1,2) = "Location"
$ws.cells.item(1,3) = "OS Type"
$ws.cells.item(2,1) = "TechPC84"
$ws.cells.item(2,2) = "5th Floor"
$ws.cells.item(2,3) = "Windows Vista"

$a.activeworkbook.saveas("c:\data\myws.xls")

 Here, you create a new COM object for Excel and then you display the Excel win-
dow by setting the Visible property. When you instantiate the Excel object, you have
a number of methods and properties available for working with the Excel application
and a number of related subobjects that represent workbooks, worksheets, and indi-
vidual table cells. To view the default values for properties of the Excel object, enter
the example and then enter $a. To view the methods and properties available for
working with the top-level Excel application object, enter $a | get-member.

 After you create the Excel object, you add a workbook to the application window
by using the Add() method of the Workbooks object. This creates a Workbook
object, which also has methods and properties as well as a related Worksheets
object array. To view the default values for properties of the Workbook object, enter
$wb. To view the methods and properties available for working with the Workbook
object, type $wb | get-member.

 Next, you specify that you want to work with the fi rst worksheet in the workbook
you just created. You do this by using the Item() method of the Worksheets object
array. This creates a Worksheet object, which also has methods and properties
as well as a related Cells object array. To view the default values for properties of
the Worksheet object, enter $ws. To view the methods and properties available for
working with the Worksheet object, enter $ws | get-member.

 Once you’ve created a worksheet, you can add data to the worksheet. You do
this by using the Item() method of the Cells object array. When you call the Item()
method, you specify the column and row position of the cell you want to write to
and then specify the value you want. To view the default values for properties of
the Cells object, enter $ws.cells. To view the methods and properties available for
working with the Cells object, enter $ws.cells | get-member.

 Individual table cells are represented by Cell objects. To view the default values
for properties of the cell in column 1 row 1, enter $ws.cells.item(1,1). To view the
methods and properties available for working with the Cell object in column 1 row
1, enter $ws.cells.item(1,1) | get-member.

$a = New-Object -comobject "Excel.Application"
$a.Visible = $True
$wb = $a.workbooks.add()
$ws = $wb.worksheets.item(1)

$ws.cells.item(1,1) = "Computer Name"
$ws.cells.item(1,2) = "Location"
$ws.cells.item(1,3) = "OS Type"
$ws.cells.item(2,1) = "TechPC84"
$ws.cells.item(2,2) = "5th Floor"
$ws.cells.item(2,3) = "Windows Vista"

$a.activeworkbook.saveas("c:\data\myws.xls")

CHAPTER 6 Mastering Aliases, Functions, and Objects202

Working with .NET Framework Classes and Objects

The .NET Framework is so tightly integrated with PowerShell that it is diffi cult to
talk about PowerShell and not talk about .NET as well. We’ve used .NET classes and
.NET objects in this and other chapters.

One way to instantiate and use a .NET Framework object is to make a direct
invocation to a static class. To do this, you enclose the class name in square brack-
ets, insert two colon characters, and then add a method or property call. This is the
same technique we previously used to work with instances of [System.Datetime],
[System.Math], and other classes.

The following example creates an instance of the [System.Environment] class and
gets the current directory:

[system.environment]::CurrentDirectory

C:\data\scripts\myscripts

TIP You can use tab expansion to view static members of a .NET Framework class.

Type the class name in brackets, type :: and then press Tab or Shift+Tab to browse

available methods and properties.

You also can create a reference to an instance of a .NET Framework object using
the New-Object cmdlet. The basic syntax is

New-Object [-Set AssocArray] [-TypePath Strings] [[-ArgumentList]
Objects] [-TypeName] String

The following example creates a reference object for the Application log through
the System.Diagnostic.Eventlog object:

$log = new-object -type system.diagnostics.eventlog -argumentlist
application

Max(K) Retain OverflowAction Entries Name

------ ------ -------------- ------- ----

20,480 0 OverwriteAsNeeded 45,061 application

TIP After you’ve attached to a .NET Framework class instance, you can use tab

expansion to view instance members. For example, if you store the object in $log, you

type $log, type a dot (.), and then press Tab or Shift+Tab to browse available methods

and properties.

[system.environment]::CurrentDirectory

C:\data\scripts\myscripts

New-Object [-Set AssocArray] [-TypePath Strings] [[-ArgumentList]
Objects] [-TypeName] String

$log = new-object -type system.diagnostics.eventlog -argumentlist
application

Max(K) Retain OverflowAction Entries Name

------ ------ -------------- ------- ----

20,480 0 OverwriteAsNeeded 45,061 application

 Mastering Aliases, Functions, and Objects CHAPTER 6 203

Although we’ve looked at many .NET Framework classes in this chapter, there are
many more available. Table 6-5 lists some of these by their class name.

TABLE 6-5 Common .NET Framework Objects for Use with Windows PowerShell

CLASS DESCRIPTION

Microsoft.Win32.Registry Provides Registry objects for working with
root keys

Microsoft.Win32.RegistryKey Represents keys in the registry

System.AppDomain Represents the environment where
 applications execute

System.Array Provides interaction with arrays

System.Console Represents the standard input, output, and
error streams for the console

System.Convert Provides static methods and a property for
converting data types

System.Datetime Represents a datetime value

System.Diagnostics.Debug Provides methods and properties for
 debugging

System.Diagnostics.EventLog Provides interaction with Windows event logs

System.Diagnostics.Process Provides interaction with Windows processes

System.Drawing.Bitmap Represents pixel data for images

System.Drawing.Image Provides methods and properties for working
with images

System.Environment Provides information about the working
 environment and platform

System.Guid Represents a globally unique identifier (GUID)

System.IO.Stream Represents IO streams

System.Management.
Automation.PowerShell

Represents a PowerShell object to which you
can add notes, properties, and so on

System.Math Provides static methods and properties for
performing mathematical functions

System.Net.Dns Provides interaction with Domain Name
System (DNS)

System.Net.NetworkCredential Provides credentials for network
 authentication

CHAPTER 6 Mastering Aliases, Functions, and Objects204

TABLE 6-5 Common .NET Framework Objects for Use with Windows PowerShell

CLASS DESCRIPTION

System.Net.WebClient Provides interaction with the Web client

System.Random Represents a random number generator

System.Refl ection.Assembly Represents .NET Framework assemblies so
that you can load and work with them

System.Security.Principal.
WellKnownSidType

Represents security identifi ers (SIDs)

System.Security.Principal.
WindowsBuiltInRole

Specifi es built-in roles

System.Security.Principal.
WindowsIdentity

Represents a Windows user

System.Security.Principal.
WindowsPrincipal

Allows checking of a user’s group
 membership

System.Security.SecureString Represents secure text that is encrypted for
privacy

System.String Provides interaction with strings

System.Text.RegularExpressions.
Regex

Represents immutable regular expressions

System.Threading.Thread Provides interaction with threads

System.Type Represents type declarations

System.Uri Represents uniform resource identifi ers (URIs)

System.Windows.Forms.
FlowLayoutPanel

Represents a layout panel

System.Windows.Forms.Form Represents a window or dialog box in an
 application

Some .NET Framework objects require that related .NET Framework assemblies
be loaded before you can use them. Assemblies are simply sets of fi les, which can
include dynamic-link libraries (DLLs), EXE fi les, and other resources that the .NET
Framework object needs to work properly. You’ll know that a .NET Framework
 object requires an assembly because PowerShell will throw an error if the assembly
is not loaded, such as

Unable to find type [system.drawing.image]: make sure that the assembly
containing this type is loaded.
At line:1 char:23

Unable to find type [system.drawing.image]: make sure that the assembly
containing this type is loaded.
At line:1 char:23

 Mastering Aliases, Functions, and Objects CHAPTER 6 205

+ [system.drawing.image] <<<< |get-member -static
 + CategoryInfo : InvalidOperation: (system.drawing.
image:String)
[], RuntimeException
 + FullyQualifiedErrorId : TypeNotFound

 The solution is to use the [Refl ection.Assembly] class to load the required assem-
blies. One way to do this is with the LoadWithPartialName() method of the Refl ec-
tion.Assembly class. The syntax is

[Reflection.Assembly]::LoadWithPartialName("ClassName")

 where ClassName is the name of the .NET Framework class that completes the
 requirement. For example, you can use the System.Drawing.Bitmap class to convert a
GIF image to JPEG. Because this class requires the assemblies of the System.Windows
.Forms class, you must load the related assemblies before you can convert an image.

 When you load a refl ection assembly, PowerShell confi rms this and displays the
related output automatically as shown in this example:

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

GAC Version Location

--- ------- --------

True v2.0.50727 C:\Windows\assembly\GAC_MSIL\System.Windows.Forms

\2.0.0.0__b77a5c561934e089\System.Windows.For...

 This output is important. The True value for GAC tells you the assembly loaded
successfully. The Version value tells you the specifi c version of .NET Framework the
assembly uses. The location tells you the location in the operating system.

 When you call a refl ection assembly, I recommend formatting the output as a list
as shown in this example:

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") |
format-list

CodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

EntryPoint :

EscapedCodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.

Forms/2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

FullName : System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089

GlobalAssemblyCache : True

+ [system.drawing.image] <<<< |get-member -static
 + CategoryInfo : InvalidOperation: (system.drawing.
image:String)
[], RuntimeException
 + FullyQualifiedErrorId : TypeNotFound

[Reflection.Assembly]::LoadWithPartialName("ClassName")

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms")

GAC Version Location

--- ------- --------

True v2.0.50727 C:\Windows\assembly\GAC_MSIL\System.Windows.Forms

\2.0.0.0__b77a5c561934e089\System.Windows.For...

[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") |
format-list

CodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.Forms/

2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

EntryPoint :

EscapedCodeBase : file:///C:/Windows/assembly/GAC_MSIL/System.Windows.

Forms/2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll

FullName : System.Windows.Forms, Version=2.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089

GlobalAssemblyCache : True

CHAPTER 6 Mastering Aliases, Functions, and Objects206

HostContext : 0

ImageFileMachine :

ImageRuntimeVersion : v2.0.50727

Location : C:\Windows\assembly\GAC_MSIL\System.Windows.

Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll

ManifestModule : System.Windows.Forms.dll

MetadataToken :

PortableExecutableKind :

ReflectionOnly : False

This listing gives you important additional details about the assembly you
just loaded, including the simple text name, version number, culture identifi er,
and public key. All of this information is listed as the FullName entry. If you copy
the FullName entry exactly, beginning with the simple text name, you have the
full load string you need to use the Load() method. Because the Load() method
is the preferred way to load assemblies and the LoadWithPartialName() method
is deprecated, this will help you prepare for when you can no longer use the
LoadWith PartialName() method.

To continue the example, after you’ve loaded the [System.Windows.Forms] class,
you can convert a GIF image in the current directory to JPEG using the following
statements:

$image = New-Object System.Drawing.Bitmap myimage.gif

$image.Save("mynewimage.jpg","JPEG")

Here, you get an image called MyImage.gif in the current directory and then
convert the image to JPEG format. You can substitute any GIF image and add
an image path as necessary. While you are working with the image, you can view its
width, height, and other properties by entering $image. You can view methods for
working with the image by entering $image | get-member.

Working with WMI Objects and Queries

Computers running Windows XP and later versions of Windows support Windows
Management Instrumentation (WMI). WMI is a management framework that you
can use to query a computer to determine its attributes. For example, you can
 create a WMI query to determine the operating system running on a computer or
the amount of available memory. WMI queries by themselves are helpful, especially
when used in scripts.

You can use WMI queries to examine settings based on just about any measur-
able characteristic of a computer, including

 Amount of memory installed

 Available hard disk space

HostContext : 0

ImageFileMachine :

ImageRuntimeVersion : v2.0.50727

Location : C:\Windows\assembly\GAC_MSIL\System.Windows.

Forms\2.0.0.0__b77a5c561934e089\System.Windows.Forms.dll

ManifestModule : System.Windows.Forms.dll

MetadataToken :

PortableExecutableKind :

ReflectionOnly : False

$image = New-Object System.Drawing.Bitmap myimage.gif

$image.Save("mynewimage.jpg","JPEG")

 Mastering Aliases, Functions, and Objects CHAPTER 6 207

 Processor type or speed

 Network adapter type or speed

 Operating system version, service pack level, or hotfi x

 Registry key or key value

 System services that are running

 You create WMI queries using the WMI Query Language. The basic syntax is

Select * from WMIObjectClass where Condition

 In this syntax, WMIObjectClass is the WMI object class you want to work with,
and Condition is the condition you want to evaluate. The Select statement returns
objects of the specifi ed class. A condition has three parts:

 The name of the object property you are examining

 An operator, such as = for equals, > for greater than, or < for less than

 The value to evaluate

 Operators can also be defi ned by using –Is or –Like. The –Is operator is used to
exactly match criteria. The –Like condition is used to match a keyword or text string
within a value. In the following example, you create a query to look for computers
running Windows Vista:

Select * from Win32_OperatingSystem where Caption like "%Vista%"

 The Win32_OperatingSystem class tracks the overall operating system confi guration.
The Win32_OperatingSystem class is one of two WMI object classes that you’ll use
frequently. The other is Win32_ComputerSystem. The Win32_ComputerSystem class
tracks the overall computer confi guration.

 In Windows PowerShell, you can use the Get-WMIObject cmdlet to get a WMI
object that you want to work with. The basic syntax is

Get-WmiObject -Class WMIClass -Namespace NameSpace -ComputerName
ComputerName

 where WMIClass is the WMI class you want to work with, NameSpace sets the
namespace to use within WMI, and ComputerName sets the name of the computer
to work with.

 When working with WMI, you should work with the root namespace, as specifi ed
by setting the –Namespace parameter to root/cimv2. By using the –Computer
parameter, you can specify the computer you want to work with. If you want to
work with the local computer, use a dot (.) instead of a computer name. By redirect-
ing the object to Format-List *, you can list all the properties of the object and their
values.

 Following this, you can examine the Win32_OperatingSystem object and
its properties to obtain summary information regarding the operating system

Get-WmiObject -Class WMIClass -Namespace NameSpace -ComputerName
ComputerName

CHAPTER 6 Mastering Aliases, Functions, and Objects208

 confi guration of a computer by typing the following command at the Windows
PowerShell prompt:

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2
 -ComputerName . | Format-List *

To save the output in a fi le, simply redirect the output to a fi le. In the following
example, you redirect the output to a fi le in the working directory named
os_save.txt:

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2
-ComputerName . | Format-List * > os_save.txt

The detailed operating system information tells you a great deal about the
 operating system running on the computer. The same is true for computer
 confi guration details, which can be obtained by typing the following command at
a Windows PowerShell prompt:

Get-WmiObject -Class Win32_ComputerSystem -Namespace root/cimv2
-ComputerName . | Format-List *

In addition to targeting operating system or computer confi guration properties,
you might want to target computers based on the amount of disk space and fi le
system type. In the following example, you target computers that have more than
100 megabytes (MB) of available space on the C, D, or G partition:

get-wmiobject -query 'Select * from Win32_LogicalDisk where (Name = "C:"
OR Name = "D:" OR Name = "G:") AND DriveType = 3 AND FreeSpace
> 104857600 AND FileSystem = "NTFS"'

In the preceding example, DriveType = 3 represents a local disk, and FreeSpace
units are in bytes (100 MB = 104,857,600 bytes). The partitions must be located on
one or more local fi xed disks, and they must be running the NTFS fi le system. Note
that while PowerShell understands storage units in MB, KB, or whatever, the WMI
query language does not.

In Windows PowerShell, you can examine all the properties of the Win32_Logical-
Disk object by typing the following command at the Windows PowerShell prompt:

Get-WmiObject -Class Win32_LogicalDisk -Namespace root/cimv2
-ComputerName . | Format-List *

As you’ll see, there are many properties you can work with, including
 Compressed, which indicates whether a disk is compressed. Table 6-6 provides
an overview of these and other important WMI object classes.

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2
 -ComputerName . | Format-List *

Get-WmiObject -Class Win32_OperatingSystem -Namespace root/cimv2
-ComputerName . | Format-List * > os_save.txt

Get-WmiObject -Class Win32_ComputerSystem -Namespace root/cimv2
-ComputerName . | Format-List *

get-wmiobject -query 'Select * from Win32_LogicalDisk where (Name = "C:"
OR Name = "D:" OR Name = "G:") AND DriveType = 3 AND FreeSpace
> 104857600 AND FileSystem = "NTFS"'

Get-WmiObject -Class Win32_LogicalDisk -Namespace root/cimv2
-ComputerName . | Format-List *

 Mastering Aliases, Functions, and Objects CHAPTER 6 209

TABLE 6-6 WMI Classes Commonly Used with Windows PowerShell

WMI CLASS DESCRIPTIONS

Win32_BaseBoard Represents the motherboard

Win32_BIOS Represents the attributes of the computer’s
firmware

Win32_BootConfiguration Represents the computer’s boot
 configuration

Win32_CacheMemory Represents cache memory on the computer

Win32_CDROMDrive Represents each CD-ROM drive configured
on the computer

Win32_ComputerSystem Represents a computer system in a Windows
environment

Win32_Desktop Represents the common characteristics of a
user’s desktop

Win32_DesktopMonitor Represents the type of monitor or display
device connected to the computer

Win32_DiskDrive Represents each physical disk drive on a
computer

Win32_DiskPartition Represents each partitioned area of a
 physical disk

Win32_DiskQuota Tracks disk space usage for NTFS volumes

Win32_Environment Represents a system environment setting on
a computer

Win32_LogicalDisk Represents each logical disk device used for
data storage

Win32_LogonSession Provides information about the current
logon session

Win32_NetworkAdapter Represents each network adapter on the
computer

Win32_NetworkAdapter-
Configuration

Represents the configuration of each
 network adapter on the computer

Win32_NetworkConnection Represents an active network connection

Win32_OperatingSystem Represents the working environment for the
operating system

 CHAPTER 6 Mastering Aliases, Functions, and Objects210

TABLE 6-6 WMI Classes Commonly Used with Windows PowerShell

WMI CLASS DESCRIPTIONS

Win32_OSRecoveryConfiguration Represents recovery and dump files

Win32_PageFileUsage Represents the page file used for handling
virtual memory swapping

Win32_PhysicalMemory Represents each DIMM of physical memory
configured on the computer

Win32_PhysicalMemoryArray Represents the total memory configuration
of the computer by capacity and number of
memory devices

Win32_Printer Represents each configured print device on
the computer

Win32_PrinterConfiguration Represents configuration details for print
devices

Win32_PrintJob Represents active print jobs generated by
applications

Win32_Processor Represents each processor or processor core
on the computer

Win32_QuickFixEngineeering Represents updates that have been applied
to the computer

Win32_Registry Represents the Windows registry

Win32_SCSIController Represents each SCSI controller on the
computer

Win32_Service Represents each service configured on the
computer

Win32_Share Represents each file share configured on the
computer

Win32_SoundDevice Represents the computer’s sound device

Using the techniques I discussed previously, you can examine the properties
of any or all of these objects in Windows PowerShell. If you do, you will find that
Win32_Physical MemoryArray has a MaxCapacity property that tracks the total
physical memory in kilobytes. Knowing this, you can easily create a WMI query to

 Mastering Aliases, Functions, and Objects CHAPTER 6 211

look for computers with 256 MB of RAM or more. The WMI query to handle the task
is the following:

if (get-wmiobject -query "Select * from Win32_PhysicalMemoryArray where
MaxCapacity > 262000") {write-host $env:computername}

CORPC87

 I used the value 262000 because there are 262,144 kilobytes in 256 MB, and we
want the computer to have at least this capacity. Now if you add this statement to a
job running on remote computers as discussed in Chapter 4, “Using Sessions, Jobs,
and Remoting,” you can search across the enterprise to fi nd computers that meet
your specifi cations.

 To display a complete list of WMI objects, type the following command at the
Windows PowerShell prompt:

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . | Format-List name

 Because the list of available objects is so long, you’ll defi nitely want to redirect
the output to a fi le. In the following example, you redirect the output to a fi le in the
working directory called FullWMIObjectList.txt:

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . |
Format-List name > FullWMIObjectList.txt

 Rather than viewing all WMI classes, you might want to see only the Win32 WMI
classes. To view only the Win32 WMI classes, use the following command:

Get-WmiObject -list | where {$_.name -like "*Win32_*"}

if (get-wmiobject -query "Select * from Win32_PhysicalMemoryArray where
MaxCapacity > 262000") {write-host $env:computername}

CORPC87

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . | Format-List name

Get-WmiObject –list -Namespace root/cimv2 -ComputerName . |
Format-List name > FullWMIObjectList.txt

Get-WmiObject -list | where {$_.name -like "*Win32_*"}

213

CHAP TER 7

Managing Computers with
Commands and Scripts

Getting More from Your Scripts and Profiles 213

Creating Transcripts 216

Creating Transactions 217

Common Elements in Scripts 222

PowerShell scripts are text files containing the commands you want to execute.
These are the same commands you normally type at the PowerShell prompt.

However, rather than type the commands each time you want to use them, you
create a script to store the commands for easy execution.

Although scripts are useful, you’ll more often work with PowerShell directly at
the PowerShell prompt. You can create some extensive one-liners that’ll let you
do just about anything, and if one line won’t suffice, you can type multiple lines of
commands just as you would in a script. Additionally, if you want to copy examples
from a document, the PowerShell console allows you to copy and paste a series
of commands in the same way as you copy and paste a single command. The only
difference is that with a series of commands, PowerShell executes each command
separately.

Getting More from Your Scripts and Profiles

Because scripts contain standard text characters, you can create and edit scripts
using any standard text editor as well as the PowerShell Integrated Scripting
Environment (ISE). When you type commands, be sure to place each command or
group of commands that should be executed together on a new line or to separate
commands with a semicolon. Both techniques ensure proper execution of the
commands. When you have finished creating a PowerShell script, save the script
file using the .ps1 extension. In most cases, you’ll be able to save scripts only to

CHAPTER 7 Managing Computers with Commands and Scripts214

restricted areas of the fi le system if you start the PowerShell ISE or your text editor
as an administrator.

 When you save a script, you can execute it as if it were a cmdlet or external
 utility: simply type the path to the script, type the name of the script, and press
Enter. When you do this, PowerShell reads the script fi le and executes its commands
one by one. It stops executing the script when it reaches the end of the fi le. Any
 output from the script is written to the PowerShell console, unless you explicitly
specify otherwise.

 Don’t forget that your PowerShell profi les are some of the most powerful scripts
you can create. Your profi les can contain aliases, functions, and variables that you
can use at any time. When you are logged on locally, the profi les in $pshome and
$home affect you. When you are using remoting, the profi les in $pshome and
$home on the remote computer affect you.

Listing 7-1 shows an example profi le. This profi le defi nes several functions and
several aliases. The Prompt function modifi es the prompt so that it always shows the
current path and the computer name. The GetWinRm function gets the status of the
Windows Remote Management service. The GetS function lists confi gured services
by their status, such as Running or Stopped. The Inventory function lists the proper-
ties of the Win32_OperatingSystem. Three aliases provide keystroke shortcuts to
 functions: gr for GetWinRm, gs for GetS, and inv for Inventory.

LISTING 7-1 An Example Profile

function prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm
new-alias gs gets
new-alias inv inventory
function getwinrm {
 get-service -name winrm | format-list
}

function gets {param ($status)
 get-service | where { $_.status -eq $status}
}

function inventory {param ($name = ".")
 get-wmiobject -class win32_operatingsystem -namespace root/cimv2 `
 -computername $name | format-list *
}

NOTE The third line from the bottom includes a back apostrophe (`). As discussed

in previous chapters, this character tells PowerShell the command is continued on the

next line. If you have trouble typing a line with a continuation character, simply type

the divided lines as a single line without the back apostrophe (`).

function prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm
new-alias gs gets
new-alias inv inventory
function getwinrm {
 get-service -name winrm | format-list
}

function gets {param ($status)
 get-service | where { $_.status -eq $status}
}

function inventory {param ($name = ".")
 get-wmiobject -class win32_operatingsystem -namespace root/cimv2 `
 -computername $name | format-list *
}

 Managing Computers with Commands and Scripts CHAPTER 7 215

 You are able to use variables, aliases, and functions in profi les because they
are loaded into the global working environment. As you get used to using the
additional elements you’ve created, you’ll increasingly want them to be available
whenever you are logged on and working with Windows. In some cases, you’ll be
able to copy your profi les to the computers you work with, such as with servers you
 manage, and you’ll then be able to take advantage of the features you’ve built into
your profi le. However, copying your profi le to every possible computer you’ll work
with in the enterprise isn’t practical. In these cases, you still can take advantage of
your profi le if you prepare ahead of time.

 To prepare, you need to modify a copy of your profi le so that its elements are
declared as global explicitly. Listing 7-2 shows how you can accomplish this for the
sample profi le created previously. Next, you need to save the modifi ed profi le in a
location that will be accessible on other computers you work with, such as a network
share. Finally, on the computer you are working with, you can load the script into
the global environment by running it. Be sure to specify the full path to the script,
such as \\FileServer84\DataShare\wrstanek\profi le.ps1.

LISTING 7-2 Example of a Modified Profile

function global:prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm -scope global
new-alias gs gets -scope global
new-alias inv inventory -scope global

function global:getwinrm {
 get-service -name winrm | format-list
}

function global:gets {param ($status)
 get-service | where { $_.status -eq $status}
}

function global:inventory {param ($name = ".")
 get-wmiobject -class win32_operatingsystem -namespace root/cimv2 -
computername $name | format-list *
}

 Keep in mind that execution policy must be set to allow you to run scripts from
remote resources. If execution policy requires remote scripts to be signed, you need
to add a signature to the script before you can run it. Additionally, before Power-
Shell runs the script, you will likely see a security warning similar to the following:

Security Warning

Run only scripts that you trust. While scripts from the Internet can be

useful, this script can potentially harm your computer. Do you want to

run \\192.168.1.252\wrs\profileold.ps1?

[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"):

function global:prompt {"PS $(get-location) [$env:computername]> "}

new-alias gr getwinrm -scope global
new-alias gs gets -scope global
new-alias inv inventory -scope global

function global:getwinrm {
 get-service -name winrm | format-list

}

function global:gets {param ($status)
 get-service | where { $_.status -eq $status}

}

function global:inventory {param ($name = ".")
 get-wmiobject -class win32_operatingsystem -namespace root/cimv2 -

computername $name | format-list *
}

Security Warning

Run only scripts that you trust. While scripts from the Internet can be

useful, this script can potentially harm your computer. Do you want to

run \\192.168.1.252\wrs\profileold.ps1?

[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"):

CHAPTER 7 Managing Computers with Commands and Scripts216

To proceed and run the script, you need to type R and press Enter. For more
information about execution policy and scripting signing, see the “Using Scripts”
section in Chapter 1, “Introducing Windows PowerShell.”

Creating Transcripts

 The PowerShell console includes a transcript feature to help you record all your
activities at the prompt. As of this writing, you cannot use this feature in the
 PowerShell application. Commands you use with transcripts include the following:

 Start-Transcript Initializes a transcript fi le and then creates a record of all
subsequent actions in the PowerShell session

Start-Transcript [[-path] FilePath] [-force] [-noClobber] [-append]

 Stop-Transcript Stops recording actions in the session and fi nalizes the
transcript

Stop-Transcript

 You tell PowerShell to start recording your activities using the Start-Transcript
cmdlet. This cmdlet creates a text transcript that includes all commands that you
type at the prompt and all the output from these commands that appears on the
console. The basic syntax for Start-Transcript is

Start-Transcript [[-path] FilePath]

 where FilePath specifi es an alternate save location for the transcript fi le. Although
you cannot use wildcards when you set the path, you can use variables. The directo-
ries in the path must exist or the command fails.

 NOTE If you do not specify a path, Start-Transcript uses the path in the value of the

$Transcript global variable. If you have not created this variable, Start-Transcript stores

the transcript in the $Home\[My]Documents directory as a PowerShell_transcript.

TimeStamp.txt fi le, where TimeStamp is a date-time stamp.

 Use the –Force parameter to override restrictions that prevent the command
from succeeding. For example, –Force will override the read-only attribute on an
existing fi le. However, –Force will not modify security or change fi le permissions.

 By default, if a transcript fi le exists in the specifi ed path, Start-Transcript over-
writes the fi le without warning. Use the –noClobber parameter to stop PowerShell
from overwriting an existing fi le. Alternatively, use the –Append parameter to add
the new transcript to the end of an existing fi le.

 When you want to stop recording the transcript, you can either exit the console
or type Stop-Transcript. The Stop-Transcript cmdlet requires no additional
 parameters.

Start-Transcript [[-path] FilePath] [-force] [-noClobber] [-append]

Stop-Transcript

 Managing Computers with Commands and Scripts CHAPTER 7 217

REAL WORLD When you start a transcript, PowerShell initializes the transcript fi le

by inserting a header similar to the following:

Windows PowerShell Transcript Start
Start time: 20100211134826
Username : CPANDL\Bubba
Machine : TECHPC85 (Microsoft Windows NT 6.0.6001
Service Pack 1)

Transcript started, output file is C:\Users\Bubba\Documents\
PowerShell_transcript.20100211134826.txt

 This header specifi es the time the transcript was started, the user who started the

transcript, the computer for which the transcript was created, and the full path to

the transcript fi le. Note that the user name is provided in DOMAIN\UserName or

MachineName\UserName format and that the machine information includes the Win-

dows version and service pack. This information is helpful when you are troubleshoot-

ing, because it enables you to know if the script is running in the wrong user context

or against a computer running an incompatible version of Windows. When you stop a

transcript, PowerShell inserts a footer similar to the following:

Windows PowerShell Transcript End
End time: 20090211134958

 This footer specifi es the time the transcript was stopped. The difference between the

start time and the stop time is the elapsed run time for a script or the total trouble-

shooting/work time when you are working at the prompt.

Creating Transactions

 A transaction is a block of commands that are managed as a unit where either all
the commands are successful and completed, or all the commands are undone and
rolled back because one or more commands failed. You can use transactions when
you want to be sure that every command in a block of commands is successful and
to avoid leaving the computer in a damaged or unpredictable state.

Understanding Transactions

 Whether you are working with relational databases, distributed computing environ-
ments, or PowerShell, transactions are some of the most powerful commands you
can work with. Why? Because transactions ensure that changes are applied only
when appropriate, and when you encounter any problems, the changes are undone
and the original working environment is restored.

Windows PowerShell Transcript Start
Start time: 20100211134826
Username : CPANDL\Bubba
Machine : TECHPC85 (Microsoft Windows NT 6.0.6001
Service Pack 1)

Transcript started, output file is C:\Users\Bubba\Documents\
PowerShell_transcript.20100211134826.txt

Windows PowerShell Transcript End
End time: 20090211134958

CHAPTER 7 Managing Computers with Commands and Scripts218

To restore the working environment, transacted commands must keep track
of changes that were made as well as the original content and values. Because of
this, commands must be designed specifi cally to support transactions, and not all
 commands can or do support transactions. In PowerShell, support for transactions
must be implemented at two levels:

 Provider Providers that provide cmdlets must be designed to support
transactions.

 Cmdlet Individual cmdlets, implemented on compliant providers, must be
designed to support transactions.

In the core PowerShell environment, with Windows Vista or later, the only core
component that supports transactions is the Registry provider. On this provider, the
Item-related cmdlets support transactions, including New-Item, Set-Item, Clear-Item,
Copy-Item, Move-Item, and Remove-Item. You can also use the System.Management
.Automation.TransactedString class to include expressions in transactions on any
version of Windows that supports Windows PowerShell. Other providers can be
 updated to support transactions, and you can look for compliant providers by
 typing the following command:

get-psprovider | where {$_.Capabilities -like "*transactions*"}

At their most basic, transactions work like this:

 1. You start a transaction.

 2. You perform transacted commands.

 3. You commit or undo transacted commands.

Transactions also can have subscribers. A subscriber is a sequence of transacted
commands that is handled as a subunit within an existing transaction. For example,
if you are using PowerShell to work with a database, you might want to start a
 transaction prior to changing data in the database. Then you might want to create
subtransactions for each data set you are manipulating. Because the success or
failure of each subtransaction determines the success or failure of the entire
transaction, you must commit each subtransaction separately before you commit
the primary transaction.

Cmdlets you can use with transactions include the following:

 Get-Transaction Gets an object that represents the current active transac-
tion in the session or the last transaction if there is no active transaction. This
allows you to view the rollback preference, the subscriber count, and the
status of the transaction.

Get-Transaction

 Complete-Transaction Commits an active transaction, which
 fi nalizes the transaction and permanently applies any related changes.
If the transaction includes multiple subscribers, you must type one

Get-Transaction

 Managing Computers with Commands and Scripts CHAPTER 7 219

 Complete-Transaction command for every dependent subscriber to com-
mit the transaction fully.

Complete-Transaction

 Start-Transaction Starts a new independent transaction or joins an exist-
ing transaction as a dependent subscriber. The default rollback preference
is Error. Although there is no default time-out for transactions started at
the command line, the default timeout for transactions started in a script is
30 minutes.

Start-Transaction [-Independent] [-RollbackPreference {Error |
TerminatingError | Never}] [-Timeout Minutes]

 Undo-Transaction Rolls back the active transaction, which undoes any
 related changes and restores the original working environment. If the trans-
action includes multiple subscribers, the Undo-Transaction command rolls
back the entire transaction for all subscribers.

Undo-Transaction

 Use-Transaction Adds a script block to the active transaction, enabling
transacted scripting of compliant .NET Framework objects, such as instances
of the System.Management.Automation.TransactedString class. You cannot
use noncompliant objects in a transacted script block. To enter the active
transaction, you must use the –UseTransaction parameter. Otherwise, the
command is ineffective.

Use-Transaction [-UseTransaction] [-TransactedScript] ScriptBlock

 REAL WORLD Cmdlets that support transactions have a –UseTransaction parameter.

As changes are made to PowerShell, you can fi nd cmdlets that support transactions

by typing the following command: get-help * -parameter UseTransaction. If a cmdlet

has this parameter, the cmdlet supports transactions. Note that default cmdlets,

such as the Item cmdlets with the Registry provider, might not be listed in the help

 documents as having the –UseTransaction parameter.

 When you use transactions to modify a computer’s confi guration, keep in mind the

data that is affected by the transaction is not changed until you commit the transaction.

However, other commands that are not part of the transaction could make the same

changes, and this could affect the working environment. Although most transactional

systems, such as relational databases, have a feature that locks data while you are

working on it, PowerShell does not have a lock feature.

 In each PowerShell session, only one independent transaction can be active at a
time. If you start a new, independent transaction while a transaction is in progress,

Complete-Transaction

Start-Transaction [-Independent] [-RollbackPreference {Error |
TerminatingError | Never}] [-Timeout Minutes]

Undo-Transaction

Use-Transaction [-UseTransaction] [-TransactedScript] ScriptBlock

CHAPTER 7 Managing Computers with Commands and Scripts220

the new transaction becomes the active transaction, and you must complete the
new transaction before making any changes to the original transaction. You
complete transactions by committing or rolling back changes.

With a successful transaction, all the changes made by the commands are com-
mitted and applied to the working environment. With an unsuccessful transaction,
all the changes made by the commands are undone, and the working environment
is restored to its original state. By default, transactions are rolled back automatically
if any command in the transaction generates an error.

Using Transactions

 To start a new independent transaction or join an existing transaction as a depen-
dent subscriber, you type start-transaction at the PowerShell prompt or in a script.
By default, if you use Start-Transaction while a transaction is in progress, the existing
transaction object is reused, and the subscriber count is incremented by one. You
can think of this as joining the original transaction. To complete a transaction with
multiple subscribers, you must type a Complete-Transaction command for each
subscriber.

 NOTE PowerShell supports subscribers to transactions to accommodate environ-

ments when a script contains a transaction that calls another script that contains its

own transaction. Because the transactions are related, they should be rolled back or

committed as a unit.

Start-Transaction supports three parameters: –Independent, –RollbackPreference,
and –Timeout. The –Independent parameter applies only when a transaction is
already in progress in the session. If you use the –Independent parameter, a new
transaction is created that can be completed or undone without affecting the
original transaction. However, because only one transaction can be active at a time,
you must complete or roll back the new transaction before resuming work with the
original transaction.

In the following example and sample output, you start a transaction with
 automatic rollback set to Never and a timeout value of 30 minutes:

start-transaction –rollbackpreference "never" –timeout 30

Suggestion [1,Transactions]: Once a transaction is started, only commands

that get called with the -UseTransaction flag become part of that

transaction.

By adding the –RollbackPreference parameter, you can specify whether a
 transaction is automatically rolled back. Valid values are

 Error Transactions are rolled back automatically if any command in the
transaction generates a terminating or nonterminating error. This is the
default.

start-transaction –rollbackpreference "never" –timeout 30

Suggestion [1,Transactions]: Once a transaction is started, only commands

that get called with the -UseTransaction flag become part of that

transaction.

 Managing Computers with Commands and Scripts CHAPTER 7 221

 TerminatingError Transactions are rolled back automatically if any
 command in the transaction generates a terminating error.

 Never Transactions are never rolled back automatically.

 You can use the –Timeout parameter to specify the maximum time, in minutes,
that a transaction can be active. When the timeout expires, the transaction is
automatically rolled back. By default, there is no timeout for transactions started at
the command line. When transactions are started by a script, the default timeout is
30 minutes.

 After you’ve started a transaction, you can perform transacted commands in two
ways. You can

 Add script blocks to the active transaction with Use-Transaction.

 Add an individual command to the active transaction using the command’s
–UseTransaction parameter.

 PowerShell executes the script blocks and commands as you add them to the
transaction, taking appropriate action if errors are encountered or if the timeout
value is reached. You can obtain information about the transaction using Get-
 Transaction as shown in this example and sample output:

get-transaction

RollbackPreference SubscriberCount Status

------------------ --------------- ------

Never 3 Active

 Here, Get-Transaction shows you the rollback preference is Never, the subscriber
count is 3, and the status of the transaction is Active.

 If PowerShell doesn’t automatically roll back the transaction, because of errors
or a timeout expiration, you can manually commit or roll back the transaction. To
commit the transaction, you type complete-transaction once for each subscriber.
To undo a transaction completely for all subscribers, you type undo-transaction.

 Consider the following example:

start-transaction

cd hkcu:\Software
new-item MyKey -UseTransaction
new-itemproperty -path MyKey -Name Current -value "Windows PowerShell" `
-UseTransaction

complete-transaction

 Here, you start a transaction so that you can work safely with the registry. You
access the HKCU\Software hive and create a new key called MyKey. Then you

get-transaction

RollbackPreference SubscriberCount Status

------------------ --------------- ------

Never 3 Active

start-transaction

cd hkcu:\Software
new-item MyKey -UseTransaction
new-itemproperty -path MyKey -Name Current -value "Windows PowerShell" `
-UseTransaction

complete-transaction

CHAPTER 7 Managing Computers with Commands and Scripts222

add a value to this key. As long as these operations did not generate an error, the
 transaction continues to be active, and you then apply the changes by completing
the transaction.

Common Elements in Scripts

Now that we’ve discussed how to work with scripts, let’s look at common elements
you’ll use in scripts, including

 Comments

 Initializing statements

 Conditional statements

 Control loops

Using Comments and Initializing Statements

Most scripts begin with comments that specify what a script is for and how it is used.
PowerShell supports two types of comments:

 Single-line comments that begin with #. PowerShell interprets everything
from the begin-comment mark to the end of the line as a comment. Here is
an example:

$myVar = "$env:computername" #Get the computer name

NOTE Because values in strings are interpreted differently and # is not interpreted

as a special character in a string, you can use # in single-quoted and double-

 quoted strings, and # will not be handled as the beginning of a comment.

 Multiple-line comments that begin with the <# delimiter and end with
the #> delimiter. If you have a begin-comment delimiter, you must have a
matching end-comment delimiter. PowerShell interprets everything between
the begin and end comment tags as a comment. Here is an example:

<# --------------------------

 ScriptName: EvaluateComp.ps1
 Description: This script checks the working environment
 of a computer to determine issues with drive space, network
 connections, etc.

-------------------------- #>

Every script you create should have comments that include the following details:

 When the script was created and last modifi ed

 Who created the script

$myVar = "$env:computername" #Get the computer name

<# --------------------------

 ScriptName: EvaluateComp.ps1
 Description: This script checks the working environment
 of a computer to determine issues with drive space, network
 connections, etc.

-------------------------- #>

 Managing Computers with Commands and Scripts CHAPTER 7 223

 What the script is used for

 How to contact the script creator

 Whether and where the script output is stored

 Not only are the answers to the questions of who, what, how, where, and when
important for ensuring that the scripts you create can be used by other administra-
tors, they can also help you remember what a particular script does, especially if
weeks or months have passed since you last worked with the script. An example of a
script that uses comments to answer these questions is shown as Listing 7-3.

LISTING 7-3 Sample Script Header

<# --------------------------
 ScriptName: CheckDNS.ps1
 Creation Date: 2/28/2010
 Last Modified: 3/15/2010
 Author: William R. Stanek
 E-mail: williamstanek@aol.com

 Description: Checks DNS and IP configuration.

 Files: Stores output in c:\data\checkdns.txt.

-------------------------- #>

 REAL WORLD Keep in mind that you can also use comments to

 Insert explanatory text within scripts, such as documentation on how a

 function works.

 Prevent a command from executing. On the command line, add # before the

command to comment it out.

 Hide part of a line from interpretation. Add # within a line to block interpreta-

tion of everything that follows the # character.

 After you add a header to your script, you might want to initialize the console
so that the working environment appears the same way every time. For example,
you might want to use Cls (or Clear-Host) to clear the console window and reset the
screen buffer, and use the Start-Transcript cmdlet to record all output to a transcript
fi le. If you start a transcript, be sure to add a Stop-Transcript cmdlet at the end of
your script to end the transcript session.

 You also might want your script to initialize the PowerShell window by setting
the window size, text color, and window title. Here is an example:

if ($host.name -eq "ConsoleHost") {
$size=New-Object System.Management.Automation.Host.Size(120,80);
$host.ui.rawui.WindowSize=$size }

<# --------------------------
 ScriptName: CheckDNS.ps1
 Creation Date: 2/28/2010
 Last Modified: 3/15/2010
 Author: William R. Stanek
 E-mail: williamstanek@aol.com

 Description: Checks DNS and IP configuration.

 Files: Stores output in c:\data\checkdns.txt.

-------------------------- #>

if ($host.name -eq "ConsoleHost") {
$size=New-Object System.Management.Automation.Host.Size(120,80);
$host.ui.rawui.WindowSize=$size }

CHAPTER 7 Managing Computers with Commands and Scripts224

$myHostWin = $host.ui.rawui
$myHostWin.ForegroundColor = "Blue"
$myHostWin.BackgroundColor = "Yellow"
$myHostWin.WindowTitle = "Working Script"

Here, you get an instance of the System.Management.Automation.Host object so
that you can set the window size to 120 lines high by 80 characters wide if you are
working with the PowerShell console. Then you use properties of the $host.ui.rawui
object to specify that you want to use blue text on a yellow background and a
window title of Working Script. For more information on these object instances, see
the “Digging Deeper into Functions” and “Digging Deeper into Objects” sections in
Chapter 6, “Mastering Aliases, Functions, and Objects.”

 NOTE When you dynamically reset the size of the PowerShell console, you must keep

in mind the current display resolution and the console’s confi gured dimensions. You

shouldn’t set the width and height of the console so that it is larger than the display size.

You’ll get an error if you try to set the width of the console so that it is greater than the

buffer size. Because resizing the window won’t work with the PowerShell application, you

may want to check the value of the $Host.Name property to ensure that you are working

with the console and not the PowerShell ISE. $Host.Name is set to “Windows PowerShell

ISE Host” for the PowerShell application and “ConsoleHost” for the PowerShell console.

 When you are initializing the script, you also want to ensure the following:

 The script will run on a computer with a compatible version of PowerShell.

 The host application is indeed Windows PowerShell .

 Required PowerShell snap-ins, providers, and modules are available.

 PowerShell includes a #Requires statement that you can use to validate the
PowerShell version, the host application, and the availability of snap-ins. Using
Requires statements, you can do the following:

 Verify the PowerShell version, where N is the version number and n is the op-
tional revision number. To verify the PowerShell version is 2.0 or later, use 2 or 2.0.

#requires -Version N[.n]

#requires –version 2
#requires –version 2.0

 Verify the host application ID, where ShellID is the identifi er for the host
 application. To verify the host application is the PowerShell console or
 PowerShell ISE, use a value of Microsoft.PowerShell.

#requires –ShellId ShellId

#requires –ShellId "Microsoft.PowerShell"

$myHostWin = $host.ui.rawui
$myHostWin.ForegroundColor = "Blue"
$myHostWin.BackgroundColor = "Yellow"
$myHostWin.WindowTitle = "Working Script"

#requires -Version N[.n]

#requires –version 2
#requires –version 2.0

#requires –ShellId ShellId

#requires –ShellId "Microsoft.PowerShell"

 Managing Computers with Commands and Scripts CHAPTER 7 225

 Verify a specifi ed snap-in—or, optionally, a specifi ed version of the
 snap-in—is loaded in the current session, where PSSnapIn is the snap-in
identifi er and the optional N and .n values set the required version.

#requires –PsSnapIn PsSnapIn [-Version N[.n]]

#requires –PsSnapIn ADRMS.PS.Admin -Version 2

 Whenever you use #Requires statements, the script runs only if the computer
meets the criteria set in the #Requires statements. For additional discussion on this
topic, see the “Navigating Windows PowerShell Extensions” section in Chapter 3,
“Managing Your Windows PowerShell Environment.”

 As with most cmdlets and external utilities, you can pass arguments to scripts
when you start them. You use arguments to set special parameters in a script or
to pass along information needed by the script. Each argument should follow
the script name and be separated by a space (and enclosed in quotation marks if
necessary). In the following example, a script named Check-Computer in the current
working directory is passed the arguments FileServer26 and Extended:

.\check-computer fileserver26 extended

 Each value passed along to a script can be examined using the $args array. You
reference the fi rst argument using $args[0], the second using $args[1], and so on.
The script name itself is represented by the $MyInvocation.MyCommand.Name
property. The full fi le path to the script is represented by the $MyInvocation
.MyCommand.Path property.

 NOTE Because PowerShell stores arguments in an array, there is no limit to the

 number of arguments you can pass to a script. Further, regardless of the number of

arguments you use, the last argument is always represented by $args[$arg.length - 1],

and the total number of arguments used is represented by $args.count. If no argu-

ments are passed to a script, the argument count is zero.

Using Conditional Statements

 Now that you know how to work with and initialize scripts, let’s look at the selection
statements used to control the fl ow of execution based upon conditions known only
at run time. These statements include:

 If…Else, to execute a block of statements if a condition is matched (true or
false) and to otherwise execute a second block of statements.

 If…ElseIf…Else, to execute a block of statements if a condition is matched
(true or false). Otherwise, it’s used to execute a second block of statements
if a second condition is matched. Finally, it’s used to execute a third block of
statements if neither of the previous conditions is met.

#requires –PsSnapIn PsSnapIn [-Version N[.n]]

#requires –PsSnapIn ADRMS.PS.Admin -Version 2

.\check-computer fileserver26 extended

CHAPTER 7 Managing Computers with Commands and Scripts226

 If Not, to execute a statement when a condition is false. Otherwise, the
 statement is bypassed.

 Switch, to perform a series of three or more conditional tests.

Using If, If…Else, and If…ElseIf…Else

Although some of the previous examples in this book used conditional execution,
we haven’t discussed the syntax for these statements. If your background doesn’t
include programming, you probably will be surprised by the power and fl exibility of
these statements.

The If statement is used for conditional branching. It can be used to route script
execution through two different paths. Its basic syntax is

if (condition) {codeblock1} [else {codeblock2}]

 Here, each code block can contain a single command or multiple commands. The
condition is any expression that returns a Boolean value of True or False when evalu-
ated. The Else clause is optional, meaning you can also use the following syntax:

if (condition1) {codeblock1}

The If statement works like this: If the condition is true, codeblock1 is executed.
Otherwise, codeblock2 is executed (if the Else clause is provided). In no case will
both the If and Else clauses be executed. Frequently, the expression used to control
If statements involves a test for equality. In fact, the most basic type of string com-
parison is when you compare two strings using the equality operator (=), such as

if (stringA = stringB) {codeblock}

Here, you are performing a literal comparison of the strings; if they are identical,
the related code block is executed. This syntax works for literal strings but is not
ideal for use in scripts. Parameters, property values, and arguments might contain
spaces, or there might be no value at all for a variable. In this case, you might get an
error if you perform literal comparisons. Instead, use the comparison operators to
perform more advanced comparisons, such as –eq, –like, –match, or –contains.

To learn about other advanced techniques, consider the following example and
sample output:

if ($args.count -eq 0) {throw "No arguments passed to script"}
else {write-host "You passed args to the script"}

No arguments passed to script

At C:\Users\Bubba\dat.ps1:8 char:24

+ if ($args.count) {throw <<<< "No arguments passed to script"}

if (condition) {codeblock1} [else {codeblock2}]

if (condition1) {codeblock1}

if (stringA = stringB) {codeblock}

if ($args.count -eq 0) {throw "No arguments passed to script"}
else {write-host "You passed args to the script"}

No arguments passed to script

At C:\Users\Bubba\dat.ps1:8 char:24

+ if ($args.count) {throw <<<< "No arguments passed to script"}

 Managing Computers with Commands and Scripts CHAPTER 7 227

 + CategoryInfo : OperationStopped: (No arguments passed to

script:String) [], RuntimeException

 + FullyQualifiedErrorId : No arguments passed to script

 Here, if you don’t pass any arguments to the script, the script throws an error.
Because the default error action for PowerShell is to halt execution, this is an
 effective way to stop processing a script when expected conditions are not met. The
Else condition applies when you pass arguments to the script, and in this example,
“You passed args to the script” is written to the output.

 Alternatively, if a script requires an argument, such as a computer name, you
could use the If…Else construct to catch the missing argument and prompt the user
to enter it using the Read-Host cmdlet as shown in this example and sample output:

if ($args.count -eq 0) {
 $compName = read-host "Enter the name of the computer to check"
} else {
 $compName = $args[0]
}

Enter the name of the computer to check: FileServer84.cpandl.com

 Here, if you don’t type an argument, the Read-Host cmdlet prompts you and
then stores the value you specify in the $compName variable. Otherwise, the
$ compName variable is set to the value of the fi rst argument you pass to the script.

 Using any of the logical operators, listed previously in Table 5-7, you can check
two conditions. In the following example, the If condition is met only when the
conditions on either side of the logical AND are true:

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {
 write-host "Performing system checks..."
 } else {
 write-host "Script will not perform system checks..."
}

.\check-sys.ps1 Check

Performing system checks...

 PowerShell also allows you to use If…ElseIf…Else constructs to execute a block of
statements if a condition is met. Otherwise, it allows you to execute a second block
of statements if a second condition is met. Finally, it allows you to execute a third
block of statements if neither of the previous conditions is met. The basic syntax is

if (condition1) {action1} elseif (condition2) {action2} else {action3}

 + CategoryInfo : OperationStopped: (No arguments passed to

script:String) [], RuntimeException

 + FullyQualifiedErrorId : No arguments passed to script

if ($args.count -eq 0) {
 $compName = read-host "Enter the name of the computer to check"
} else {
 $compName = $args[0]
}

Enter the name of the computer to check: FileServer84.cpandl.com

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {
 write-host "Performing system checks..."
} else {
 write-host "Script will not perform system checks..."
}

.\check-sys.ps1 Check

Performing system checks...

if (condition1) {action1} elseif (condition2) {action2} else {action3}

CHAPTER 7 Managing Computers with Commands and Scripts228

The following example uses the If…ElseIf…Else construct to perform actions
 depending on the value of the fi rst argument passed to the script:

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {
 write-host "Performing system checks..."
 } elseif (($args.count -ge 1) -and ($args[0] -eq "Test")) {
 write-host "Performing connectivity tests..."
} else {
 write-host "Script will not perform system checks or tests."
}

.\check-sys.ps1 Test

Performing connectivity tests...

When you want to execute a statement only if a condition is false, you can use
If Not. The basic syntax is

if (!condition) {codeblock1} [else {codeblock2}]

or

if (-not (condition)) {codeblock1} [else {codeblock2}]

Here PowerShell evaluates the condition. If it is false, PowerShell executes the
statements in codeblock1. Otherwise, codeblock1 doesn’t execute, and PowerShell
proceeds to codeblock2, if present. The Else clause is optional, meaning you can
also use the following syntax:

if (!condition) {codeblock1}

Consider the following example:

if (!$args.count -ge 1) {
 read-host "Enter the name of the computer to check"
}

Here you execute the code block when the argument count is not greater than
or equal to one (meaning the argument count is zero).

 TIP A nested If is an If statement within an If statement. Nested Ifs are common in

programming, and PowerShell scripting is no exception. When you nest If statements,

you place the required If…Else or If…ElseIf…Else construct with its subconditions and

subcodeblocks inside the code block of the original If…Else or If…ElseIf…Else construct.

if (($args.count -ge 1) -and ($args[0] -eq "Check")) {
 write-host "Performing system checks..."
 } elseif (($args.count -ge 1) -and ($args[0] -eq "Test")) {
 write-host "Performing connectivity tests..."
} else {
 write-host "Script will not perform system checks or tests."
}

.\check-sys.ps1 Test

Performing connectivity tests...

if (!condition) {codeblock1} [else {codeblock2}]

if (-not (condition)) {codeblock1} [else {codeblock2}]

if (!condition) {codeblock1}

if (!$args.count -ge 1) {
 read-host "Enter the name of the computer to check"
}

 Managing Computers with Commands and Scripts CHAPTER 7 229

Using Switch

 Checking for multiple conditions using If…ElseIf…Else constructs is a lot of work for
you and for PowerShell. An easier way to check three or more conditions is to use
Switch constructs. Using Switch, you can check multiple conditions in a way that is
clear and easy to understand. You can also add a default code block that is executed
if none of the other conditions are met.

 The basic syntax for a Switch construct is

switch (pipeline_expression) {

 value1 { codeblock1 }
 value2 { codeblock2 }
 value3 { codeblock3 }
 . . .
 valueN { codeblockN }
 default { default_codeblock}

 The Switch construct is essentially an extended series of If statements that get
the condition to test from a pipeline value you provide. If a value in the pipeline
matches a specifi ed value, the related code block is executed. After the code block
is executed, PowerShell exits the switch. If there are additional values in the pipeline
to process, PowerShell evaluates those values, each in turn, in the same way.

 NOTE Each Switch construct can have only one default. If there is more than one

default clause, an error results.

 Switch constructs can be used with any valid data type. If the value to check is
an array of numbers, strings, or objects, each element is evaluated in order against
the switch conditions, starting with element 0. At least one element must be present
that meets at least one condition, or PowerShell generates an error. In the follow-
ing example and sample output, you defi ne an array called $myValue, assign four
values, and then process the values through a Switch construct:

$myValue = 4, 5, 6, 0

switch ($myValue) {
 0 { write-host "The value is zero."}
 1 { write-host "The value is one."}
 2 { write-host "The value is two."}
 3 { write-host "The value is three."}
 default { write-host "The value doesn't match expected parameters."}
}

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value is zero.

switch (pipeline_expression) {

 value1 { codeblock1 }
 value2 { codeblock2 }
 value3 { codeblock3 }
. . .
 valueN { codeblockN N }N
 default { default_codeblock}

$myValue = 4, 5, 6, 0

switch ($myValue) {
 0 { write-host "The value is zero."}
 1 { write-host "The value is one."}
 2 { write-host "The value is two."}
 3 { write-host "The value is three."}
 default { write-host "The value doesn't match expected parameters."}
}

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value doesn't match expected parameters.

The value is zero.

CHAPTER 7 Managing Computers with Commands and Scripts230

This processing approach is the same one PowerShell uses if you insert continue
clauses as the last statement in every code block. Rather than have PowerShell
continue processing with the next value in the pipeline, you might want PowerShell
to stop processing any additional values in the pipeline. To do this, you can add
the break statement whenever you want PowerShell to exit the Switch construct.
Typically, you add a break statement as the last statement in a code block. Thus, the
basic syntax becomes

switch (pipeline) {

 value1 { codeblock1 break}
 value2 { codeblock2 break}
 value3 { codeblock3 break}
 . . .
 valueN { codeblockN break}
 default { default_codeblock}

In the following example, you use break statements to break out of the Switch
construct:

$myError = "Green", "Red", "Yellow", "Green"

switch ($myError) {
 "Red" { write-host "A critical error occurred. Break."; break}
 "Yellow" { write-host "A warning occurred. Break."; break}
 "Green" { write-host "No error occurred yet. No break." }
 default { write-host "The values don't match expected parameters."}
}

No error occurred yet. No break.

A critical error occurred. Break.

By default, when you use Switch, PowerShell does not consider the letter case
and looks for exact matches only. To control what determines matches, you can add
the following fl ags:

 –regex Matches string values against a regular expression. If the value
you are testing is not a string, this option is ignored. Don’t use it with the
– wildcard and –exact fl ags.

 –wildcard Matches string values using wildcards. Indicates that the match
clause, if a string, is treated as a wildcard string. If the value you are testing
is not a string, this option is ignored. Don’t use it with the –regex and –exact
fl ags.

 –exact Performs an exact match of string values. If the value you are test-
ing is not a string, this option is ignored. Don’t use it with the –regex and
–exact fl ags.

switch (pipeline) {

 value1 { codeblock1 break}
 value2 { codeblock2 break}
 value3 { codeblock3 break}
. . .

 valueN { codeblockN N break}N
 default { default_codeblock}

$myError = "Green", "Red", "Yellow", "Green"

switch ($myError) {
 "Red" { write-host "A critical error occurred. Break."; break}
 "Yellow" { write-host "A warning occurred. Break."; break}
 "Green" { write-host "No error occurred yet. No break." }
 default { write-host "The values don't match expected parameters."}
}

No error occurred yet. No break.

A critical error occurred. Break.

 Managing Computers with Commands and Scripts CHAPTER 7 231

 –casesensitive Performs a case-sensitive match. If the value you are
 testing is not a string, this option is ignored.

 –fi le Takes input from a fi le rather than a statement. Each line of the fi le
is read as a separate element and passed through the switch block, starting
with the fi rst line of the fi le. At least one element must be present that meets
at least one condition, or PowerShell generates an error.

 The following example switches based on the status of a service you specify by
name in the fi rst argument or when prompted:

if (!$args.count -ge 1) {
 $rh = read-host "Enter the name of the service to check"
 $myValue = get-service $rh
} else {
 $myValue = get-service $args[0]
}

$serName = $myValue.Name

switch -wildcard ($myValue.Status) {
 "S*" { write-host "The $serName service is stopped."}
 "R*" { write-host "The $serName service is running."}
 "P*" { write-host "The $serName service is paused."}
 default { write-host "Check the service."}
}

Enter the name of the service to check: w32time

The W32Time service is running.

Using Control Loops

 When you want to execute a command or a series of commands repeatedly, you
use control loops. A loop is a method for controlling the logical fl ow and execution
of commands. In PowerShell, you can perform controlled looping in several ways,
including

 For looping

 ForEach looping

 While looping

 Do While looping

 Do Until looping

 You can create a basic loop using the For statement. You use For loops to
 execute a code block for a specifi c count. The structure of For loops is as follows:

for (countStartValue; condition; countNextValue) { CodeBlockToRepeat }

if (!$args.count -ge 1) {
 $rh = read-host "Enter the name of the service to check"
 $myValue = get-service $rh
} else {
 $myValue = get-service $args[0]
}

$serName = $myValue.Name

switch -wildcard ($myValue.Status) {
 "S*" { write-host "The $serName service is stopped."}
 "R*" { write-host "The $serName service is running."}
 "P*" { write-host "The $serName service is paused."}
 default { write-host "Check the service."}
}

Enter the name of the service to check: w32time

The W32Time service is running.

for (countStartValue; condition; countNextValue) { CodeBlockToRepeat }t

CHAPTER 7 Managing Computers with Commands and Scripts232

where countStartValue is a statement that initializes the counter that controls the
For loop, condition is a statement that specifi es what value the counter must reach
to stop looping, and countNextValue is a statement that sets the next value for
the counter. Note that the elements in parentheses are separated with semicolons
and that the next value for the counter is set after each iteration (and not before
 iteration begins).

You can set the next value for the counter using any assignment operator. In the
following example and sample output, you initialize the counter to 1, loop as long
as the counter is less than or equal to 10, and increment the counter by 1 after each
iteration:

for ($c=1; $c -le 10; $c++){write-host $c}

1

2

3

4

5

6

7

8

9

10

In the following example and sample output, you initialize the counter to 10,
loop as long as the counter is greater than or equal to 0, and decrement the counter
by 1 after each iteration:

for ($c = 10; $c -ge 0; $c--) {Write-Host $c}

10

9

8

7

6

5

4

3

2

1

0

for ($c=1; $c -le 10; $c++){write-host $c}

1

2

3

4

5

6

7

8

9

10

for ($c = 10; $c -ge 0; $c--) {Write-Host $c}

10

9

8

7

6

5

4

3

2

1

0

 Managing Computers with Commands and Scripts CHAPTER 7 233

 You can just as easily increment or decrement the counter by twos, threes, or
more as shown in these examples:

for ($c=1; $c -le 100; $c += 2){write-host $c}
for ($c=1; $c -le 100; $c += 3){write-host $c}

for ($c = 20; $c -ge 0; $c -= 2) {Write-Host $c}
for ($c = 20; $c -ge 0; $c -= 3) {Write-Host $c}

 Another type of loop is a ForEach loop. With ForEach loops, you iterate through
each element in a collections of items. Although you can work with other types of
collections, you’ll more typically work with collections of items in an array.

 ForEach loops are similar to standard For loops. The key difference is that the
number of elements in the collection determines the number of times you go
through the loop. The basic syntax is

ForEach (Item in Collection) { CodeBlockToRepeat }

 where Item is a variable that PowerShell creates automatically when the ForEach
loop runs, and Collection is the collection of items to iterate through. The collection
can come directly from the pipeline. In the following example and sample output,
you perform an action against each process in a collection of processes:

foreach ($p in get-process) {
 if ($p.handlecount -gt 500) {
 Write-Host $p.Name, $p.pm }
}

aolsoftware 14766080

csrss 1855488

csrss 22507520

explorer 34463744

 Here, every running process is examined. The If statement checks for processes
with greater than 500 fi le handles and lists their name and private memory set.
This technique can help you fi nd processes that are using a lot of resources on the
computer.

 In the following example and sample output, you perform an action against each
fi le in a collection of fi les:

if (!$args.count -ge 1) {
 $path = read-host "Enter the name of the base directory to check"
} else {
 $path = $args[0]
}

for ($c=1; $c -le 100; $c += 2){write-host $c}
for ($c=1; $c -le 100; $c += 3){write-host $c}

for ($c = 20; $c -ge 0; $c -= 2) {Write-Host $c}
for ($c = 20; $c -ge 0; $c -= 3) {Write-Host $c}

ForEach (Item inm Collection) { CodeBlockToRepeat }t

foreach ($p in get-process) {
 if ($p.handlecount -gt 500) {
 Write-Host $p.Name, $p.pm }
}

aolsoftware 14766080

csrss 1855488

csrss 22507520

explorer 34463744

if (!$args.count -ge 1) {
 $path = read-host "Enter the name of the base directory to check"
} else {
 $path = $args[0]
}

CHAPTER 7 Managing Computers with Commands and Scripts234

foreach ($file in Get-ChildItem -path $path -recurse) {
 if ($file.length -gt 1mb) {
 $size = [Math]::Round($file.length/1MB.ToString("F0"))
 Write-Host $file, $size, $file.lastaccesstime }
}

A Catalog Section 1.pdf 8095845 11/23/2009 8:10:16 PM

A Catalog Section 2.pdf 12021788 11/23/2009 8:10:16 PM

Here, every fi le in a specifi ed base directory and its subdirectories is examined.
The If statement looks for fi les with a fi le size greater than 1 MB and lists their name,
size in MB, and last access time. This technique can help you fi nd large fi les that
haven’t been accessed in a long time.

TIP With For and ForEach loops, you’ll sometimes want to break out of the loop

before iterating through all of the possible values. To break out of a loop ahead of

schedule, you can use the Break statement. The best place for this statement is within

the code blocks for If, If…Else, and If…ElseIf…Else constructs.

 Sometimes you’ll want to execute a code segment while a condition is met. To do
this, you use While looping. The structure of this loop is as follows:

while (condition) {CodeBlockToRepeat}

 With the While statement, the loop is executed as long as the condition is met.
To break out of the loop, you must change the condition at some point within the
loop. Here is an example of a While loop that changes the status of the condition:

$x = 0
$continuetoggle = $true
while ($continuetoggle) {
 $x = $x + 1
 if ($x -lt 5) {write-host "x is less than 5."}
 elseif ($x -eq 5) {write-host "x equals 5."}
 else { write-host "exiting the loop."
 $continuetoggle = $false }
}

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

Exiting the loop.

foreach ($file in Get-ChildItem -path $path -recurse) {
 if ($file.length -gt 1mb) {
 $size = [Math]::Round($file.length/1MB.ToString("F0"))
 Write-Host $file, $size, $file.lastaccesstime }
}

A Catalog Section 1.pdf 8095845 11/23/2009 8:10:16 PM

A Catalog Section 2.pdf 12021788 11/23/2009 8:10:16 PM

while (condition) {CodeBlockToRepeat}

$x = 0
$continuetoggle = $true
while ($continuetoggle) {
 $x = $x + 1
 if ($x -lt 5) {write-host "x is less than 5."}
 elseif ($x -eq 5) {write-host "x equals 5."}
 else { write-host "exiting the loop."
 $continuetoggle = $false }
}

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

Exiting the loop.

 Managing Computers with Commands and Scripts CHAPTER 7 235

 By placing the condition at the top of the loop, you ensure that the loop is
executed only if the condition is met. In the previous example, this means the loop
won’t be executed at all if continueToggle is set to False beforehand.

 However, sometimes you want to execute the loop at least once before you
check the condition. To do this, you can use the Do While construct, which places
the condition test at the bottom of the loop, as in the following example:

do {CodeBlockToRepeat} while (condition)

 In the following example, the code block is processed at least once before the
condition is checked:

$x = 0
$continuetoggle = $true
do { $x = $x + 1
 if ($x -lt 5) {write-host "x is less than 5."}
 elseif ($x -eq 5) {write-host "x equals 5."}
 else { write-host "exiting the loop."
 $continuetoggle = $false }
}
while ($continuetoggle)

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

Exiting the loop.

 The fi nal type of control loop available in PowerShell is the Do Until loop. With
Do Until, you execute a loop until a condition is met instead of while a condition is
met. As with Do While, you place the condition test at the end of the loop. The basic
syntax is

do {CodeBlockToRepeat} until (condition)

 The following loop is executed one or more times until the condition is met:

do {
 $cont = read-host "Do you want to continue? [Y/N]"
} until ($cont -eq "N")

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: n

do {CodeBlockToRepeat} while (condition)

$x = 0
$continuetoggle = $true
do { $x = $x + 1
 if ($x -lt 5) {write-host "x is less than 5."}
 elseif ($x -eq 5) {write-host "x equals 5."}
 else { write-host "exiting the loop."
 $continuetoggle = $false }
}
while ($continuetoggle)

X is less than 5.

X is less than 5.

X is less than 5.

X is less than 5.

X equals 5.

Exiting the loop.

do {CodeBlockToRepeat} until (condition)

do {
 $cont = read-host "Do you want to continue? [Y/N]"
} until ($cont -eq "N")

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: y

Do you want to continue? [Y/N]: n

237

CHAP TER 8

Managing Roles, Role
 Services, and Features

Server Manager Essentials 238

Checking Installed Roles, Role Services, and Features 245

Installing Roles, Role Services, and Features 247

Uninstalling Roles, Role Services, and Features 250

When you are working with Windows Server 2008 or later, you have many
more configuration options than when you are working with Windows Vista,

Windows 7, or later. After you’ve installed a server running Windows Server 2008
or later, you can manage the server configuration by installing and configuring the
following components:

 Server roles Server roles are related sets of software components that
allow servers to perform specific functions for users and other computers
on networks. A server can be dedicated to a single role, such as File Services,
or a server can have multiple roles.

 Role services Role services are software components that provide the
functionality of server roles. While some server roles have a single function
and installing the role installs this function, most server roles have multiple,
related role services and you are able to choose which role services to
install.

 Features Features are software components that provide additional func-
tionality. Features are installed and removed separately from roles and role
services. A computer can have multiple features installed or none, depending
on its configuration.

Normally, you manage roles, role services, and features using ServerManagerCmd,
which is a command-line administration tool, and Server Manager, which is a graphical
administration tool. However, when you are working with Windows PowerShell 2.0
or later, you can manage roles, role services, and features by importing the Server-
Manager module into the PowerShell console.

CHAPTER 8 Managing Roles, Role Services, and Features238

Server Manager Essentials

When you want to manage server confi guration using PowerShell, you need to
import the ServerManager module. Not only can you use this module’s cmdlets
to add or remove roles, role services, and features, but you can use this module’s
cmdlets to view the confi guration details and status for these software components.
You can add the Import statement to your profi le and scripts to ensure the
ServerManager module is available as shown in this example:

import-module servermanager

The ServerManager module is available on Windows Server 2008. The Server-
Manager module has several advantages over Server Manager version 6.0 and Server
Manager version 6.1, which are included in Windows Server 2008 and Windows
Server 2008 Release 2, respectively. The ServerManager module as implemented
in PowerShell allows concurrent instances to add or remove components at the
same time. This gives PowerShell an advantage over Server Manager version 6.1,
which allows only one instance of either ServerManagerCmd or Server Manager
to work at a time. Although updates to Server Manager, ServerManagerCmd, or
both might remove this restriction, the usefulness of concurrent instances remains
the same: you are able to run multiple Server Manager sessions simultaneously. For
example, you can add roles in one Server Manager session while you are removing
features in a different Server Manager session.

REAL WORLD You can add supplemental components to Windows Server 2008 or

later as downloads from the Microsoft Web site, including Windows Media Server 2008

and Windows SharePoint Server 2008. To make supplemental components available

for installation and confi guration in the Server Manager environment, download the

 installer package or packages from the Microsoft Web site. Typically, these are provided

as a set of Microsoft Update Standalone Package (.msu) fi les. Afterward, double-click

each installer package to register it for use.

Server Manager Commands

Whenever you work with the ServerManager module you should use an elevated
administrator PowerShell console. You can manage roles, role services, and features
using the following cmdlets:

 Get-WindowsFeature Lists the server’s current state with regard to roles,
role services, and features.

Get-WindowsFeature [[-Name] ComponentNames] [-LogPath LogFile.txt]

import-module servermanager

Get-WindowsFeature [[-Name] ComponentNames] [-LogPath LogFile.txt]

 Managing Roles, Role Services, and Features CHAPTER 8 239

 Add-WindowsFeature Installs the named role, role service, or feature. The
–IncludeAllSubFeature parameter allows you to install all subordinate role
services and features of the named component.

Add-WindowsFeature [-Name] ComponentNames [-IncludeAllSubFeature]
[-LogPath LogFile.txt] [-Restart] [-Concurrent]

 Remove-WindowsFeature Removes the named role, role service, or feature.

Remove-WindowsFeature [-Name] ComponentNames [-LogPath LogFile.txt]
[-Restart] [-Concurrent]

 When applicable, you can

 Use the –LogPath parameter to log error details to a named log fi le as an
alternative to the default logging used.

 Use the –Restart parameter to restart the computer automatically (if restarting
is necessary to complete the operation).

 Use the –Concurrent parameter to allow concurrent instances to add or
remove components at the same time.

 Use the –WhatIf parameter to display the operations that would be performed
if the command were executed.

 The parameter values that you can use include:

 ComponentNames Identifi es the roles, role services, or features to work
with by their name (not their display name). The –Name parameter matches
actual component names and not display names. With Get-WindowsFeature,
you can use wildcard characters. With Add-WindowsFeature and Remove-
WindowsFeature, you can use pipelining to get the required input names
from another command, such as Get-WindowsFeature.

 LogFile.txt Sets the path and name of the text fi le to which log error
details should be written.

 Most installable roles, role services, and features have a corresponding component
name that identifi es the component so that you can manipulate it from the PowerShell
prompt. This also is true for supplemental components you’ve made available by
downloading and installing their installer packages from the Microsoft Web site.

Available Roles and Role Services

 Table 8-1 provides a hierarchical listing of the component names associated
with roles, related role services, and related subcomponents. When you are
installing a role, you can use the –IncludeAllSubFeature parameter to install all the
subordinate role services and features listed under the role. When you are installing
a role service, you can use the –IncludeAllSubFeature parameter to install all the
subordinate features listed under the role service.

Add-WindowsFeature [-Name] ComponentNames [-IncludeAllSubFeature]
[-LogPath LogFile.txt] [-Restart] [-Concurrent]

Remove-WindowsFeature [-Name] ComponentNames [-LogPath LogFile.txt]
[-Restart] [-Concurrent]

 CHAPTER 8 Managing Roles, Role Services, and Features240

NOTE In the following table, a notation of 1 indicates a new or revised role for

 Windows Server 2008 R2 or later. A notation of 2 indicates a role that is no longer available.

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME ROLE SERVICE FEATURE

AD-Certificate Active Directory Certificate Services

ADCS-Cert-Authority Certification Authority

ADCS-Web-Enrollment Certification Authority Web Enrollment

ADCS-Online-Cert Online Responder

ADCS-Device-Enrollment Network Device Enrollment Service

ADCS-Enroll-Web-Svc Certificate Enrollment Web Service

ADCS-Enroll-Web-Pol Certificate Enrollment Policy Web Service

AD-Domain-Services Active Directory Domain Services (AD DS)

ADDS-Domain-Controller Active Directory Domain Controller

ADDS-Identity-Mgmt Identity Management for UNIX

ADDS-NIS Server for Network
 Information Services (NIS)

ADDS-Password-Sync Password Synchronization

ADDS-IDMU-Tools Administration Tools

AD-Federation-Services Active Directory Federation Services (AD FS)

ADFS-Federation Federation Service

ADFS-Proxy Federation Service Proxy

ADFS-Web-Agents AD FS Web Agents

ADFS-Claims Claims-Aware Agent

ADFS-Windows-Token Windows Token-Based
Agent

ADLDS Active Directory Lightweight Directory Services (AD
LDS)

ADRMS Active Directory Rights Management Services

ADRMS-Server Active Directory Rights Management
Services Server

ADRMS-Identity Identity Federation Support

DHCP Dynamic Host Configuration Protocol (DHCP) Server

 Managing Roles, Role Services, and Features CHAPTER 8 241

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME ROLE SERVICE FEATURE

DNS Domain Name System (DNS) Server

Fax Fax Server

File-Services File Services

FS-FileServer File Server

FS-DFS Distributed File System

FS-DFS-Namespace DFS Namespace

FS-DFS-Replication DFS Replication

FS-Resource-Manager File Server Resource Manager

FS-NFS-Services Services for Network File System (NFS)

FS-Search-Service Windows Search Service

FS-Win2003-Services Windows Server 2003 File Services

FS-Replication File Replication Service2

FS-Indexing-Service Indexing Service

FS-BranchCache BranchCache for Remote Files¹

Hyper-V Hyper-V

NPAS Network Policy and Access Services

NPAS-Policy-Server Network Policy Server

NPAS-RRAS-Services Routing and Remote Access Services

NPAS-RRAS Remote Access Service

NPAS-Routing Routing

NPAS-Health Health Registration Authority

NPAS-Host-Cred Host Credential Authorization Protocol

Print-Services Print and Document Services¹

Print-Server Print Server

Print-LPD-Service LPD Service

Print-Internet Internet Printing

Print-Scan-Server Distributed Scan Management Server¹

Remote-Desktop-Services Remote Desktop Services¹

RDS-RD-Server Remote Desktop Server¹

 CHAPTER 8 Managing Roles, Role Services, and Features242

TABLE 8-1 Component Names for Key Roles and Role Services

COMPONENT NAME ROLE SERVICE FEATURE

RDS-Licensing Remote Desktop (RD) Services Licensing¹

RDS-Connection-Broker RD Connection Broker¹

RDS-Gateway RD Gateway¹

RDS-Web-Access RD Web Access¹

RDS-Virtualization RD Virtualization¹

WDS Windows Deployment Services

WDS-Deployment Deployment Server

WDS-Transport Transport Server

OOB-WSUS Windows Server Update Services¹

Available Features

Table 8-2 provides a hierarchical listing of the component names associated with
features and related subfeatures. When you are installing a feature, you can use
the –IncludeAllSubFeature parameter to install all the subordinate second-level
and third-level features listed under the feature. When you are installing a second-
level feature, you can use the –IncludeAllSubFeature parameter to install all the
subordinate third-level features listed under the second-level feature.

NOTE An asterisk following the feature command indicates that the feature has

unlisted subordinate features that generally are installed together by adding the

parameter –IncludeAllSubFeature. A notation of 1 indicates a new or revised feature for

Windows Server 2008 R2 or later. A notation of 2 indicates a feature no longer avail-

able. A notation of 3 indicates a feature integrated with the operating system.

TABLE 8-2 Component Names for Key Features and Subfeatures

COMPONENT NAME FEATURE

SECOND-LEVEL

 FEATURE THIRD-LEVEL FEATURE

NET-Framework* .NET Framework 3.5.1 Features¹

BitLocker* BitLocker Drive Encryption

BITS Background Intelligent Transport Services (BITS) Server
Extensions

BranchCache BranchCache¹

CMAK Connection Manager Administration Kit

Desktop-Experience Desktop Experience

 Managing Roles, Role Services, and Features CHAPTER 8 243

TABLE 8-2 Component Names for Key Features and Subfeatures

COMPONENT NAME FEATURE

SECOND-LEVEL

 FEATURE THIRD-LEVEL FEATURE

DAMC Direct Access Management Console¹

Failover-Clustering Failover Clustering

GPMC Group Policy Management Console

Ink-Handwriting* Ink and Handwriting Services¹

Internet-Print-Client Internet Printing Client

ISNS Internet Storage Name Server

LPR-Port-Monitor LPR Port Monitor

MSMQ* Message Queuing

Multipath-IO Multipath I/O

NLB Network Load Balancing

PNRP Peer Name Resolution Protocol

qWave Quality Windows Audio Video Experience

Remote-Assistance Remote Assistance

RDC Remote Differential Compression

RSAT Remote Server Administration Tools

RSAT-Role-Tools Role Administration Tools

RSAT-ADCS* Active Directory Certificate Services
Tools

RSAT-AD-Tools AD DS and AD LDS Tools

RSAT-ADDS* Active Directory
Domain Services
Tools

RSAT-ADLDS Active Directory
Lightweight
Directory Services
Tools

RSAT-AD-PowerShell Active Directory
PowerShell snap-in¹

RSAT-RMS Active Directory Rights Management
Services Tools

RSAT-DHCP DHCP Server Tools

 CHAPTER 8 Managing Roles, Role Services, and Features244

TABLE 8-2 Component Names for Key Features and Subfeatures

COMPONENT NAME FEATURE

SECOND-LEVEL

 FEATURE THIRD-LEVEL FEATURE

RSAT-DNS-Server DNS Server Tools

RSAT-Fax Fax Server Tools

RSAT-File-Services* File Services Tools

RSAT-NPAS* Network Policy and Access Services
Tools

RSAT-Print-Services Print Services Tools

RSAT-RDS* Remote Desktop Services Tools¹

RSAT-UDDI Universal Description, Discovery, and
Integration (UDDI) Services Tools2

RSAT-Web-Server Web Server (Internet Information
 Services, IIS) Tools

RSAT-WDS Windows Deployment Services Tools

RSAT-Hyper-V Hyper-V Tools

RSAT-Feature-Tools Feature Administration Tools

RSAT-BitLocker* BitLocker Drive
Encryption Tools¹

RSAT-BITS-Server BITS Server Exten-
sions Tools

RSAT-Clustering Failover Clustering
Tools

RSAT-NLB Network Load
Balancing Tools

RSAT-SMTP Simple Mail Trans-
fer Protocol (SMTP)
Server Tools

RSAT-WINS Windows Internet
Naming Service
(WINS) Server Tools

Removable-Storage Removable Storage Manager2

RPC-over-HTTP-
Proxy

RPC over HTTP Proxy

 Managing Roles, Role Services, and Features CHAPTER 8 245

TABLE 8-2 Component Names for Key Features and Subfeatures

COMPONENT NAME FEATURE

SECOND-LEVEL

 FEATURE THIRD-LEVEL FEATURE

Simple-TCPIP Simple TCP/IP Services

SMTP-Server Simple Mail Transfer Protocol (SMTP) Server

SNMP-Services* Simple Network Management Protocol Services

Storage-Mgr-SANS Storage Manager for SANs

Subsystem-UNIX-
Apps

Subsystem for UNIX-Based Applications

Telnet-Client Telnet Client

Telnet-Server Telnet Server

TFTP-Client Trivial File Transfer Protocol (TFTP) Client

Biometric-
 Framework

Windows Biometric Framework¹

Windows-
 InternalDB

Windows Internal Database

PowerShell Windows PowerShell3

Backup-Features Windows Server Backup Features

Backup Windows Server Backup

Backup-Tools Command-Line Tools

Migration Windows Server Migration Tools¹

WSRM Windows System Resource Manager

WinRM-IIS-Ext WinRM IIS Extension

WINS-Server WINS Server

Wireless-Networking Wireless Local Area Network (LAN) Service

XPS-Viewer XML Paper Specification (XPS) Viewer

Checking Installed Roles, Role Services, and Features

Before modifying a server’s configuration, you check its current configuration and
carefully plan how adding or removing a role, role service, or feature will affect a
server’s overall performance. Although you typically want to combine complementary
roles, doing so increases the workload on the server, so you need to optimize the
server hardware accordingly.

CHAPTER 8 Managing Roles, Role Services, and Features246

At a standard or elevated PowerShell prompt, you can determine the roles, role
services, and features that are installed on a server by typing Get-WindowsFeature.
Get-WindowsFeature then lists the confi guration status of each available role, role
service, and feature. Installed roles, role services, and features are highlighted and
marked as being installed. In the output, roles and role services are listed before
features as shown in the following example and sample output:

get-windowsfeature

Display Name Name

------------ ----

[] Active Directory Certificate Services AD-Certificate

 [] Certification Authority ADCS-Cert-Authority

 [] Certification Authority Web Enrollment ADCS-Web-Enrollment

 [] Online Responder ADCS-Online-Cert

 [] Network Device Enrollment Service ADCS-Device-Enrollment

 [] Certificate Enrollment Web Service ADCS-Enroll-Web-Svc

 [] Certificate Enrollment Policy Web Service ADCS-Enroll-Web-Pol

[X] Active Directory Domain Services AD-Domain-Services

 [X] Active Directory Domain Controller ADDS-Domain-Controller

 [X] Identity Management for UNIX ADDS-Identity-Mgmt

 [X] Server for Network Information Services ADDS-NIS

 [X] Password Synchronization ADDS-Password-Sync

 [X] Administration Tools ADDS-IDMU-Tools

[X] Active Directory Federation Services AD-Federation-Services

 [X] Federation Service ADFS-Federation

 [X] Federation Service Proxy ADFS-Proxy

 [X] AD FS Web Agents ADFS-Web-Agents

 [X] Claims-aware Agent ADFS-Claims

 [X] Windows Token-based Agent ADFS-Windows-Token

[] Active Directory Lightweight Directory Services ADLDS

[X] Active Directory Rights Management Services ADRMS

 [X] Active Directory Rights Management Server ADRMS-Server

 [X] Identity Federation Support ADRMS-Identity

. . .

[X] .NET Framework 3.5.1 Features NET-Framework

 [X] .NET Framework 3.5.1 NET-Framework-Core

 [X] WCF Activation NET-Win-CFAC

 [X] HTTP Activation NET-HTTP-Activation

 [X] Non-HTTP Activation NET-Non-HTTP-Activ

[] Background Intelligent Transfer Service (BITS) BITS

 [] Compact Server BITS-LWDLServer

 [] IIS Server Extension BITS-IIS-Ext

[] BitLocker Drive Encryption BitLocker

get-windowsfeature

Display Name Name

------------ ----

[] Active Directory Certificate Services AD-Certificate

 [] Certification Authority ADCS-Cert-Authority

 [] Certification Authority Web Enrollment ADCS-Web-Enrollment

 [] Online Responder ADCS-Online-Cert

 [] Network Device Enrollment Service ADCS-Device-Enrollment

 [] Certificate Enrollment Web Service ADCS-Enroll-Web-Svc

 [] Certificate Enrollment Policy Web Service ADCS-Enroll-Web-Pol

[X] Active Directory Domain Services AD-Domain-Services

 [X] Active Directory Domain Controller ADDS-Domain-Controller

 [X] Identity Management for UNIX ADDS-Identity-Mgmt

 [X] Server for Network Information Services ADDS-NIS

 [X] Password Synchronization ADDS-Password-Sync

 [X] Administration Tools ADDS-IDMU-Tools

[X] Active Directory Federation Services AD-Federation-Services

 [X] Federation Service ADFS-Federation

 [X] Federation Service Proxy ADFS-Proxy

 [X] AD FS Web Agents ADFS-Web-Agents

 [X] Claims-aware Agent ADFS-Claims

 [X] Windows Token-based Agent ADFS-Windows-Token

[] Active Directory Lightweight Directory Services ADLDS

[X] Active Directory Rights Management Services ADRMS

 [X] Active Directory Rights Management Server ADRMS-Server

 [X] Identity Federation Support ADRMS-Identity

. . .

[X] .NET Framework 3.5.1 Features NET-Framework

 [X] .NET Framework 3.5.1 NET-Framework-Core

 [X] WCF Activation NET-Win-CFAC

 [X] HTTP Activation NET-HTTP-Activation

 [X] Non-HTTP Activation NET-Non-HTTP-Activ

[] Background Intelligent Transfer Service (BITS) BITS

 [] Compact Server BITS-LWDLServer

 [] IIS Server Extension BITS-IIS-Ext

[] BitLocker Drive Encryption BitLocker

 Managing Roles, Role Services, and Features CHAPTER 8 247

 You can use wildcard characters to review the status for a subset of components
by name. For example, if you want to check the status of only Active Directory–
related components, you can enter Get-WindowsFeature -name ad* or
 Get-WindowsFeature ad*.

 In addition to helping you determine at a glance what components are installed,
Get-WindowsFeature can help you document a server’s confi guration. To do this,
you can save the output in a fi le as standard text using the redirection symbol (>) as
shown in this example:

Get-WindowsFeature > ServerConfig03-21-2010.txt

 In this example, you save the output to a text fi le named ServerConfi g03-21-
2010.txt.

Installing Roles, Role Services, and Features

 The ServerManager module is the PowerShell component you use to install roles,
role services, and features. Roles, role services, and features can be dependent on
other roles, role services, and features. When you install roles, role services, and
features, Server Manager prompts you to install any additional roles, role services,
or features that are required.

Adding Roles, Role Services, and Features

 At an elevated command prompt, you can install roles, role services, and features
by typing add-windowsfeature ComponentName, where ComponentName is the
name of the component to install, as listed in Table 8-1 or Table 8-2. You can install
subordinate components by including the –IncludeAllSubFeature parameter as
shown in the following example and sample output:

add-windowsfeature fs-dfs -IncludeAllSubFeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

 Here, you install the Distributed File System role service as well as the subordi-
nate DFS Namespaces and DFS Replication role services. As PowerShell works, you
see a Start Installation progress bar. When the installation is complete, you see the
result. The output for a successful installation should look similar to the example.

 As you can see, the output specifi es whether the installation was successful,
whether a restart is needed, an exit code, and a list of the exact changes made. The
exit code can be different from the Success status. For example, if the components

Get-WindowsFeature > ServerConfig03-21-2010.txt

add-windowsfeature fs-dfs -IncludeAllSubFeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

CHAPTER 8 Managing Roles, Role Services, and Features248

you specify are already installed, the exit code is NoChangeNeeded, as shown in this
example and sample output:

add-windowsfeature –name net-framework -includeallsubfeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

Here, you see that Add-WindowsFeature was successful but didn’t actually make
any changes. The Feature Result shows no changes as well.

Add-WindowsFeature allows you to specify component names by getting the
input from the output of another command. Consider the following example and
sample output:

get-windowsfeature bits* | add-windowsfeature

WARNING: [Installation] Succeeded: [Background Intelligent Transfer

Service (BITS)] Compact Server. You must restart this server to finish

the installation process.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True Yes SuccessRestartRequired { BITS-LWDLServer,

BITS-IIS-Ext }

Here, Add-WindowsFeature gets the list of components to install from the Get-
WindowsFeature cmdlet. You install the Background Intelligent Transfer Service
(BITS) role service as well as the subordinate Compact Server and IIS Server Exten-
sion role services. Because you must restart the server to complete the installation
of BITS, you see a warning message as well as results.

If a restart is required to complete an installation, you can have the Add-
 WindowsFeature cmdlet restart the computer by including the –Restart parameter.
Also note that a pending restart can prevent you from adding or removing other
components. You’ll see a related error message as well as the standard output:

Add-WindowsFeature: Please restart the computer before trying to install

more roles/features.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

False Yes FailedRestartRequired { }

add-windowsfeature –name net-framework -includeallsubfeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

get-windowsfeature bits* | add-windowsfeature

WARNING: [Installation] Succeeded: [Background Intelligent Transfer

Service (BITS)] Compact Server. You must restart this server to finish

the installation process.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True Yes SuccessRestartRequired { BITS-LWDLServer,

BITS-IIS-Ext }

Add-WindowsFeature: Please restart the computer before trying to install

more roles/features.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

False Yes FailedRestartRequired { }

 Managing Roles, Role Services, and Features CHAPTER 8 249

Handling Confi guration Errors and Other Issues

 Some components cannot be installed from the command line. If you try to install
one of these components, you’ll see a warning as shown in the following example
and sample output:

get-windowsfeature ad-fe* | add-windowsfeature

WARNING: Installation of ‘Active Directory Federation Services’ is not

supported on the command line. Skipping . . .

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded { }

 To test the installation prior to performing the actual operation, you can use
the –WhatIf parameter. If you are trying to install components that are already
installed, you see a message in the output stating no changes were made, such as

get-windowsfeature ad-d* | add-windowsfeature -whatif

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

 If an error occurs and Add-WindowsFeature is not able to perform the operation
specifi ed, you see an error. Generally, error text is shown in red and includes an
error fl ag and error text as shown in the following example output:

The term ‘add-windowsfeature’ is not recognized as a cmdlet, function,

operable program, or script file. Verify the term and try again.

At line:1 char:19

+ add-windowsfeature <<<< fs-dfs

 + CategoryInfo : ObjectNotFound: (add-windowsfeature:String)

[], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

 This error indicates that PowerShell doesn’t recognize the Add-WindowsFeature
cmdlet. You see this error if you forget to import the ServerManager module using the
command import-module servermanager.

get-windowsfeature ad-fe* | add-windowsfeature

WARNING: Installation of ‘Active Directory Federation Services’ is not

supported on the command line. Skipping . . .

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded { }

get-windowsfeature ad-d* | add-windowsfeature -whatif

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

The term ‘add-windowsfeature’ is not recognized as a cmdlet, function,

operable program, or script file. Verify the term and try again.

At line:1 char:19

+ add-windowsfeature <<<< fs-dfs

 + CategoryInfo : ObjectNotFound: (add-windowsfeature:String)

[], CommandNotFoundException

 + FullyQualifiedErrorId : CommandNotFoundException

CHAPTER 8 Managing Roles, Role Services, and Features250

Another common error you’ll see occurs when you don’t use an elevated admin-
istrator PowerShell prompt:

Add-WindowsFeature: Because of security restrictions imposed by User

Account Control you must run Add-WindowsFeature in a Windows PowerShell

session opened with elevated rights.

To resolve this problem, right-click the PowerShell shortcut on the menu and
select Run As Administrator. This opens an administrator PowerShell prompt.

When you install components, Add-WindowsFeature writes extended logging
information to %SystemRoot%\logs\servermanager.log. This logging information
details every operation performed by Add-WindowsFeature. You can write the
 detailed information to an alternate location by including the –LogPath parameter.
In this example, you write the logging information to C:\logs\install.log:

add-windowsfeature BITS -IncludeAllSubFeature -LogPath
c:\logs\install.log

Finally, because PowerShell returns the output as an object, you can pass the
output object along the pipeline as necessary. You also can apply alternative
formatting to the output, such as list formatting, as shown in this example and
sample output:

get-windowsfeature net-* | add-windowsfeature | format-list *

Success : True

RestartNeeded : No

FeatureResult : { }

ExitCode : NoChangeNeeded

Uninstalling Roles, Role Services, and Features

The ServerManager module is the PowerShell component you use to uninstall roles,
role services, and features. Roles, role services, and features can be dependent on
other roles, role services, and features. If you try to remove a required component
of an installed role, role service, or feature, Server Manager warns that you cannot
remove the component unless you also remove the other role, role service, or feature.

Removing Roles, Role Services, and Features

At an elevated command prompt, you can uninstall roles, role services, and features
by typing remove-windowsfeature ComponentName, where ComponentName
is the name of the component to uninstall as listed in Table 8-1 or Table 8-2. When

Add-WindowsFeature: Because of security restrictions imposed by User

Account Control you must run Add-WindowsFeature in a Windows PowerShell

session opened with elevated rights.

add-windowsfeature BITS -IncludeAllSubFeature -LogPath
c:\logs\install.log

get-windowsfeature net-* | add-windowsfeature | format-list *

Success : True

RestartNeeded : No

FeatureResult : { }

ExitCode : NoChangeNeeded

 Managing Roles, Role Services, and Features CHAPTER 8 251

you uninstall a top-level component, subordinate components are automatically
uninstalled as well. Consider the following example and sample output:

remove-windowsfeature net-framework

WARNING: [Removal] Succeeded: [Background Intelligent Transfer Service

(BITS)] Compact Server. You must restart this server to finish the

removal process.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True Yes SuccessRestartRequired {Compact Server, IIS

Server Extension}

 Here, you uninstall the BITS role service as well as the subordinate Compact
Server and IIS Server Extension role services. As PowerShell works, you see a Start
Removal progress bar. When the removal is complete, you see the result. The output
for a successful removal should look similar to the example. Because you must
restart the server to complete the removal of BITS, you see a warning message as
well as results.

 If a restart is required to complete a removal, you can have the Remove-
 WindowsFeature cmdlet restart the computer by including the –Restart parameter. As
with installation, you can test the removal prior to performing the actual operation
using the –WhatIf parameter. If you are trying to remove components that aren’t
installed, you see a note stating no changes were made, such as

remove-windowsfeature net-framework -whatif

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

 Remove-WindowsFeature allows you to specify component names by getting
the input from the output of another command. Consider following example
and sample output:

get-windowsfeature fs-* | remove-windowsfeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

 Here, Remove-WindowsFeature gets the list of components to remove from the
Get-WindowsFeature cmdlet. You uninstall the Distributed File System role service
as well as the subordinate role services.

remove-windowsfeature net-framework

WARNING: [Removal] Succeeded: [Background Intelligent Transfer Service

(BITS)] Compact Server. You must restart this server to finish the

removal process.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True Yes SuccessRestartRequired {Compact Server, IIS

Server Extension}

remove-windowsfeature net-framework -whatif

What if: Checking if running in ‘WhatIf’ Mode.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No NoChangeNeeded {}

get-windowsfeature fs-* | remove-windowsfeature

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

True No Success {DFS Replication, DFS Namespaces}

CHAPTER 8 Managing Roles, Role Services, and Features252

Handling Removal Errors and Other Issues

If an error occurs and Remove-WindowsFeature is not able to perform the operation
specifi ed, you see an error. The errors you see are similar to those for adding
components.

In some cases, you might not be able to uninstall a component. Typically, this
occurs because a component is required by or depended on by another role, role
service, or feature. Consider the following example and sample output:

get-windowsfeature fs-* | remove-windowsfeature

Remove-WindowsFeature : DFS Replication and DFS Namesspace cannot be

removed from a domain controller.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

False No Failed {}

Here, you try to uninstall the Distributed File System role service as well as
the subordinate role services on a domain controller. However, you are unable to
remove these role services because they are required on domain controllers.

During the removal process, Remove-WindowsFeature writes extended logging
information to %SystemRoot%\logs\servermanager.log. As with the installation
process, you can write the detailed information to an alternate location by including
the –logPath parameter. Here is an example:

remove-windowsfeature net-framework -logpath c:\logs\uninstall.log

get-windowsfeature fs-* | remove-windowsfeature

Remove-WindowsFeature : DFS Replication and DFS Namesspace cannot be

removed from a domain controller.

Success Restart Needed Exit Code Feature Result

------- -------------- --------- -------------

False No Failed {}

remove-windowsfeature net-framework -logpath c:\logs\uninstall.log

253

CHAP TER 9

Inventorying and Evaluating
Windows Systems

 Getting Basic System Information 253

 Examining the System Confi guration and the Working Environment 257

 Evaluating System Hardware 267

 Often when you are working with a user’s computer or a remote server, you’ll
want to examine the working environment and computer confi guration

details. For example, you might want to know who is logged on, the current system
time, or what accounts are available locally. You might also want to know what
processor and how much RAM are installed. To do this and much more, you can
take an inventory of your computers.

 While you are inventorying your computers, you also might want to evaluate
the hardware confi guration and determine whether there are issues that need your
attention. For example, if a computer’s primary disk is getting low in free space
or a computer has little available memory, you’ll want to note this at the least and
possibly take preventative measures.

Getting Basic System Information

 Sometimes when you are working with a computer, you won’t know basic informa-
tion, such as the name of the computer, the logon domain, or the current user. This
can happen when you get called to support a computer in another department
within your organization and when you are working remotely. Items that help you
quickly gather basic user and system information include the following:

 $env:computername Displays the name of the computer

$env:computername$env:computername

CHAPTER 9 Inventorying and Evaluating Windows Systems254

 $env:username Displays the name of the user currently logged on to the
system, such as wrstanek

$env:username

 $env:userdomain Displays the logon domain of the current user, such as
CPANDL

$env:userdomain

 Get-Date Displays the current system date or current system time

Get-Date [-Date] DateTime
Get-Date –DisplayHint [Date | Time]

 Set-Date Sets the current system date or current system time

Set-Date [-Date] DateTime
Set-Date [-Adjust] TimeChange

 Get-Credential Gets a credential needed for authentication

Get-Credential [-Credential] Credential

Determining the Current User, Domain, and Computer Name

Often, you can obtain the basic information you need about the working environ-
ment from environment variables. The most common details you might need to
know include the name of the computer, the identity of the current user, and the
logon domain.

You can obtain the user, domain, and computer name information by using
$env:username, $env:userdomain, and $env:computername, respectively. In the
following example and sample output, you write this information to the console:

write-host "Domain: $env:userdomain 'nUser: $env:username 'nComputer:
$env:computername"

Domain: CPANDL

User: wrstanek

Computer: TECHPC76

Here, the user is wrstanek, the computer is TechPC76, and the user’s logon
 domain is CPANDL.

$env:username

$env:userdomain

Get-Date [-Date] DateTime
Get-Date –DisplayHint [Date | Time]

Set-Date [-Date] DateTime
Set-Date [-Adjust] TimeChange

Get-Credential [-Credential] Credential

write-host "Domain: $env:userdomain 'nUser: $env:username 'nComputer:
$env:computername"

Domain: CPANDL

User: wrstanek

Computer: TECHPC76

 Inventorying and Evaluating Windows Systems CHAPTER 9 255

 A faster alternative that provides even more information about the working
environment is to list all available environment variables and their values as shown
in this example and sample output:

get-childitem env:

Name Value

---- -----

ALLUSERSPROFILE C:\ProgramData

APPDATA C:\Users\WilliamS\AppData\Roaming

CommonProgramFiles C:\Program Files\Common Files

COMPUTERNAME TECHPC125

ComSpec C:\Windows\system32\cmd.exe

FP_NO_HOST_CHECK NO

HOMEDRIVE C:

HOMEPATH \Users\WilliamS

LOCALAPPDATA C:\Users\WilliamS\AppData\Local

LOGONSERVER \\ENGPC42

NUMBER_OF_PROCESSORS 4

OS Windows_NT

Path C:\Windows\system32;C:\Windows;

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS; JS;.PSC1

PROCESSOR_ARCHITECTURE x86

PROCESSOR_IDENTIFIER x86 Family GenuineIntel

PROCESSOR_LEVEL 6

PROCESSOR_REVISION 0f07

ProgramData C:\ProgramData

ProgramFiles C:\Program Files

PSMODULEPATH C:\Windows\System32\WindowsPowerShell;

PUBLIC C:\Users\Public

SystemDrive C:

SystemRoot C:\Windows

TEMP C:\Users\WilliamS\AppData\Local\Temp

USERDOMAIN ENGPC42

USERNAME WilliamS

USERPROFILE C:\Users\WilliamS

Determining and Setting the Date and Time

 You can get the current date and time using Get-Date. To use Get-Date, simply type
the cmdlet name at the PowerShell prompt and press Enter. The output of Get-Date
is the current date and time as shown in the following example and sample output:

get-date

Tuesday, March 16, 2010 10:40:51 AM

get-childitem env:

Name Value

---- -----

ALLUSERSPROFILE C:\ProgramData

APPDATA C:\Users\WilliamS\AppData\Roaming

CommonProgramFiles C:\Program Files\Common Files

COMPUTERNAME TECHPC125

ComSpec C:\Windows\system32\cmd.exe

FP_NO_HOST_CHECK NO

HOMEDRIVE C:

HOMEPATH \Users\WilliamS

LOCALAPPDATA C:\Users\WilliamS\AppData\Local

LOGONSERVER \\ENGPC42

NUMBER_OF_PROCESSORS 4

OS Windows_NT

Path C:\Windows\system32;C:\Windows;

PATHEXT .COM;.EXE;.BAT;.CMD;.VBS; JS;.PSC1

PROCESSOR_ARCHITECTURE x86

PROCESSOR_IDENTIFIER x86 Family GenuineIntel

PROCESSOR_LEVEL 6

PROCESSOR_REVISION 0f07

ProgramData C:\ProgramData

ProgramFiles C:\Program Files

PSMODULEPATH C:\Windows\System32\WindowsPowerShell;

PUBLIC C:\Users\Public

SystemDrive C:

SystemRoot C:\Windows

TEMP C:\Users\WilliamS\AppData\Local\Temp

USERDOMAIN ENGPC42

USERNAME WilliamS

USERPROFILE C:\Users\WilliamS

get-date

Tuesday, March 16, 2010 10:40:51 AM

CHAPTER 9 Inventorying and Evaluating Windows Systems256

If you want only the current date or current time, use the –DisplayHint parameter.
While the output of Get-Date –DisplayHint Date is the current date—such as
Tuesday, March 16, 2010—the output of Get-Date –DisplayHint Time is the
 current time, such as 10:40:51 AM. Here is an example and sample output:

get-date –displayhint time

10:40:51 AM

To set the date, time, or both, you must use an elevated administrator PowerShell
prompt. Simply follow Set-Date with the desired date and time enclosed in quota-
tion marks.

You enter the current date in MM-DD-YY format, where MM is for the two-digit
month, DD is for the two-digit day, and YY is for the two-digit year, such as typing
03-20-10 for March 20, 2010, as shown in the following example:

set-date "03-20-10"

 You enter the current time in HH:MM or HH:MM:SS format, where HH is for
the two-digit hour, MM is for the two-digit minute, and SS is for the two-digit
second. If you enter the time without designating AM for A.M. or PM for P.M., the
time command assumes you are using a 24-hour clock, where hours from 00 to
11 indicate A.M. and hours from 12 to 23 indicate P.M. The following example sets
the time to 3:30 P.M.:

set-date "3:30 PM"

You can set the date and time at the same time. All of the following examples set
the date and time to March 20, 2010, 3:30 P.M.:

set-date "03-20-10 03:30 PM"
set-date "03-20-10 03:30:00 PM"
set-date "03-20-10 15:30:00"

You also can adjust the time forward or backward using the –Adjust parameter.
Type Set-Date -Adjust followed by the time adjustment. Specify the time change in
HH:MM:SS format. The following example sets the time ahead 30 minutes:

set-date –adjust 00:30:00

To adjust the time backward, use a minus sign (–) to indicate that you want to
subtract time. The following example sets the time back one hour:

set-date –adjust -01:00:00

get-date –displayhint time

10:40:51 AM

set-date "03-20-10"

set-date "3:30 PM"

set-date "03-20-10 03:30 PM"
set-date "03-20-10 03:30:00 PM"
set-date "03-20-10 15:30:00"

set-date –adjust 00:30:00

set-date –adjust -01:00:00

 Inventorying and Evaluating Windows Systems CHAPTER 9 257

 TIP The Get-Date cmdlet returns a DateTime object. Before you experiment with

 setting the date and time, store the current date and time in a variable by typing

$date = get-date. When you are done testing, restore the date and time by typing

set-date $date. Then adjust the time as necessary to get the current time exactly.

Specifying Authentication Credentials

 When you are working with some cmdlets and objects in PowerShell that modify
system information, you might need to specify a credential for authentication.
Whether in a script or at the prompt, the easiest way to do this is to use Get-
 Credential to obtain a Credential object and save the result in a variable for later
use. Consider the following example:

$cred = get-credential

 When PowerShell reads this command, PowerShell prompts you for a user name
and password and then stores the credentials provided in the $cred variable. It is
important to point out that the credentials prompt is displayed simply because you
typed Get-Credential.

 You also can specify that you want the credentials for a specifi c user in a specifi c
domain. In the following example, you request the credentials for the TestUser ac-
count in the DevD domain:

$cred = get-credential –credential devd\testuser

 A Credential object has UserName and Password properties that you can work
with. Although the user name is stored as a regular string, the password is stored
as a secure, encrypted string. Knowing this, you can reference the user name and
password stored in $cred as follows:

$user = $cred.username
$password = $cred.password

Examining the System Confi guration and the Working

Environment

 Sometimes when you are working with a computer, you’ll want to obtain detailed
information on the system confi guration or the operating system. With mission-
critical systems, you might want to save or print this information for easy reference.
Items that help you gather detailed system information include the following:

 Get-HotFix Gets information about service packs and updates applied
to the local computer or specifi ed computers. Use –Id to look for a specifi c
hotfi x by its identifi er. Use –Description to get hotfi xes by type.

$cred = get-credential

$cred = get-credential –credential devd\testuser

$user = $cred.username
$password = $cred.password

CHAPTER 9 Inventorying and Evaluating Windows Systems258

Get-HotFix [[–Id | -Description] HotFixes] {AddtlParams}

AddtlParams=
 [-Credential Credential] [-ComputerName ComputerName1, ComputerName2,
...]

 Win32_ComputerSystem Lists detailed information about the local
 computer or a specifi ed computer.

Get-Wmiobject -Class Win32_ComputerSystem [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list *

 Win32_OperatingSystem Lists detailed information about the operating
system installed on the local computer or a specifi ed computer.

Get-Wmiobject -Class Win32_OperatingSystem [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list *

 Win32_UserAccount Lists the user accounts created or available on a
computer, which can include local user accounts and domain user accounts.

Get-Wmiobject -Class Win32_UserAccount [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list Caption, Name, Domain, FullName, SID

 Win32_Group Lists the groups created or available on a computer, which
can include local user accounts and domain user accounts.

Get-Wmiobject -Class Win32_Group [-ComputerName ComputerName1,
ComputerName2, ...] [–Credential Credential] | format-list Caption,
Name, Domain, SID

To use these commands on a local computer, simply type the commands on a
single line using the syntax shown.

Determining Windows Updates and Service Packs

With Get-HotFix, you can use the –ComputerName parameter to specify computers
to examine in a comma-separated list as shown in this example:

get-hotfix –ComputerName fileserver84, dcserver32, dbserver11

 However, to access remote computers, you’ll often need to provide credentials,
and you can do this using the –Credential parameter. Note that although you can
provide credentials for remote connections, you typically won’t be able to provide

Get-HotFix [[–Id | -Description] HotFixes] {AddtlParams}

AddtlParams=
 [-Credential Credential] [-ComputerName ComputerName1, ComputerName2,
...]

Get-Wmiobject -Class Win32_ComputerSystem [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list *

Get-Wmiobject -Class Win32_OperatingSystem [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list *

Get-Wmiobject -Class Win32_UserAccount [-ComputerName
ComputerName1, ComputerName2, ...] [–Credential Credential] |
format-list Caption, Name, Domain, FullName, SID

Get-Wmiobject -Class Win32_Group [-ComputerName ComputerName1,
ComputerName2, ...] [–Credential Credential] | format-list Caption,
Name, Domain, SID

get-hotfix –ComputerName fileserver84, dcserver32, dbserver11

 Inventorying and Evaluating Windows Systems CHAPTER 9 259

credentials for working with the local computer (and this is why you need to start
with an elevated, administrator prompt if required). The following example shows
how you can prompt directly for a required credential:

get-hotfix –Credential (get-credential) –ComputerName fileserver84,
dcserver32, dbserver11

 You also can use a stored credential as shown in this example:

$cred = get-credential
get-hotfix –Credential $cred –ComputerName fileserver84, dcserver32,
dbserver11

 Because you’ll often work with the same remote computers, you might want to
get the names of the remote computers from a fi le. To do this, enter each computer
name on a separate line in a text fi le and save this text fi le to a location where you
can always access it, such as a network share. Then get the content from the fi le as
your input to the –ComputerName parameter as shown in this example:

get-hotfix –Credential (get-credential) –ComputerName (get-content
c:\data\servers.txt)

 Or get it as shown in this example and sample output:

$comp = get-content c:\data\servers.txt
$cred = get-credential
get-hotfix –Credential $cred –ComputerName $comp

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

TECHPC75 {026C2636-... 12/19/2009

12:00:00 AM

TECHPC75 {AFB4DC8C-... 10/22/2010

12:00:00 AM

TECHPC75 Update KB937286 TECHPC75\wrstanek 10/15/2010

3:50:09 AM

TECHPC75 Software Update 928439 TECHPC75\wrstanek 4/18/2010

4:10:35 PM

TECHPC75 Security Update KB925902 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

TECHPC75 Update KB929399 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

TECHPC75 Update KB929777 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

get-hotfix –Credential (get-credential) –ComputerName fileserver84,
dcserver32, dbserver11

$cred = get-credential
get-hotfix –Credential $cred –ComputerName fileserver84, dcserver32,
dbserver11

get-hotfix –Credential (get-credential) –ComputerName (get-content
c:\data\servers.txt)

$comp = get-content c:\data\servers.txt
$cred = get-credential
get-hotfix –Credential $cred –ComputerName $comp

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

TECHPC75 {026C2636-... 12/19/2009

12:00:00 AM

TECHPC75 {AFB4DC8C-... 10/22/2010

12:00:00 AM

TECHPC75 Update KB937286 TECHPC75\wrstanek 10/15/2010

3:50:09 AM

TECHPC75 Software Update 928439 TECHPC75\wrstanek 4/18/2010

4:10:35 PM

TECHPC75 Security Update KB925902 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

TECHPC75 Update KB929399 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

TECHPC75 Update KB929777 NT AUTHORITY\SYSTEM 4/17/2010

4:57:48 PM

CHAPTER 9 Inventorying and Evaluating Windows Systems260

Here, you are getting a list of hotfi xes on a specifi ed set of remote computers
using credentials you entered when prompted. Each hotfi x is listed by

 Source Shows the name of the source computer.

 Description Shows the type of hotfi x. Types of hotfi xes include software
update, security update, and service pack. Hotfi xes also can be listed simply
as update or hotfi x.

 HotFixID Shows the identifi er for the hotfi x, which can be a globally
unique identifi er (GUID), an update identifi cation number, or a knowledge
base identifi cation number.

 InstalledBy Shows the name of the user who installed the update. If a
specifi c user name is listed, this user installed the update or the update was
installed on behalf of the user when the user was logged on. If the user is
listed as NT AUTHORITY\SYSTEM, the update was automatically installed by
Windows Update.

 InstalledOn Shows the date and time the update was installed.

Using the –Id and –Description parameters, you can look for hotfi xes with a
specifi c identifi er or a specifi c descriptive type. In the following example and sample
output, you look for service packs installed on the local computer:

get-hotfix -description "Service Pack"

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

TECHPC16 Service Pack KB936330 TECHPC16\CharleneD 10/15/2008

2:18:22 AM

 When you are trying to determine the update status of computers through-
out the enterprise, you can take this idea a step further by logging the output or
by tracking computers that don’t have a particular update installed. For example,
if KB936330 is a new service pack that you want to ensure is installed on specifi c
computers, you can type the name of each computer to check on a separate line
in a text fi le and store this list in a fi le named computers.txt. Next, you can use
Get-HotFix to check each of these computers and log your fi ndings. One approach
is shown in the following example:

$comp = get-content c:\data\computers.txt
$comp | foreach { if (!(get-hotfix -id KB936330 -computername $_)) { add-
content $_ -path log.txt }}

 Here, you retrieve a list of computer names and store each computer name as an
item in an array called $comp, and then you use a ForEach loop to take an action on
each item (computer name) in the array. That action is an If Not test that executes
Get-HotFix for each computer. As a result, if a computer does not have the required

get-hotfix -description "Service Pack"

Source Description HotFixID InstalledBy InstalledOn

------ ----------- -------- ----------- -----------

TECHPC16 Service Pack KB936330 TECHPC16\CharleneD 10/15/2008

2:18:22 AM

$comp = get-content c:\data\computers.txt
$comp | foreach { if (!(get-hotfix -id KB936330 -computername $_)) { add-
content $_ -path log.txt }}

 Inventorying and Evaluating Windows Systems CHAPTER 9 261

hotfi x, you write the computer’s name to a fi le called log.txt in the current working
directory. When you use $_ in this way, it refers to the current item in a specifi ed
array, which in this case is the name of a computer.

Obtaining Detailed System Information

 When inventorying computers in the enterprise, you’ll also want to use the
Win32_OperatingSystem and Win32_ComputerSystem classes. You use the Win32_
Operating System object and its properties to obtain summary information regarding
the operating system confi guration, as shown in the following example and partial
output:

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

Status : OK

Name : Microsoft® Windows Server® 2008 Enterprise

 |C:\Windows|\Device\Harddisk1\Partition1

FreePhysicalMemory : 679172

FreeSpaceInPagingFiles : 3749368

FreeVirtualMemory : 2748020

BootDevice : \Device\HarddiskVolume2

BuildNumber : 7000

BuildType : Multiprocessor Free

Caption : Microsoftr Windows Server 2008

CodeSet : 1252

CountryCode : 1

 When you are working with Win32_OperatingSystem, some of the most important
information includes the following:

 The amount of free physical memory and free virtual memory, which are
tracked in the TotalVisibleMemorySize and TotalVirtualMemorySize proper-
ties, respectively.

 The boot device, system directory, build number, build type, and operating
system type, which are tracked in the BootDevice, SystemDirectory,
 BuildNumber, BuildType, and Caption properties, respectively.

 The encryption level and operating system architecture, which are tracked in
the EncryptionLevel and OSArchitecture properties, respectively.

 The last boot-up time, which is tracked in the LastBootUp time property.

 The TotalVisibleMemorySize and TotalVirtualMemorySize are shown in
 kilobytes. To quickly convert the values provided to megabytes, copy each value
separately, paste it at the PowerShell prompt, and then type /1kb. For example, if
the TotalVisibleMemorySize is 3403604, you type 3403604/1kb and the answer is
3323.832 MB.

Get-WmiObject -Class Win32_OperatingSystem | Format-List *

Status : OK

Name : Microsoft® Windows Server® 2008 Enterprise

 |C:\Windows|\Device\Harddisk1\Partition1

FreePhysicalMemory : 679172

FreeSpaceInPagingFiles : 3749368

FreeVirtualMemory : 2748020

BootDevice : \Device\HarddiskVolume2

BuildNumber : 7000

BuildType : Multiprocessor Free

Caption : Microsoftr Windows Server 2008

CodeSet : 1252

CountryCode : 1

CHAPTER 9 Inventorying and Evaluating Windows Systems262

NOTE Are you wondering why I didn’t use /1mb to get a value in megabytes? The

value of the kb constant is 1024. The value of the mb constant is 1048576. If a value is

in bytes, you can type /1mb to convert the value to megabytes. However, if the value

is in kilobytes already, you must divide by 1024 to convert the value to megabytes.

 Knowing this, you can obtain and store the memory values in megabytes using
the following technique:

$os = get-wmiobject -class win32_operatingsystem
$AvailMemInMB = $os.totalvisiblememorysize/1kb
$VirtualMemInMB = $os.totalvirtualmemorysize/1kb

 Whether you are at the PowerShell prompt or working in a script, the
$AvailMemInMB and $VirtualMemInMB variables are then available for your use.

 The boot device, system device, system directory, and build information provide
essential information about the confi guration of the operating system. You can
use this information to determine the physical disk device on which Windows is
installed, the actual directory in the fi le system, the type of build as either single or
multiprocessor, and the exact operating system version installed.

 Knowing this, you can obtain and store the related information using the follow-
ing technique:

$os = get-wmiobject -class win32_operatingsystem
$BootDevice = $os.bootdevice
$SystemDevice = $os.systemdevice
$SystemDirectory = $os.systemdirectory
$BuildType = $os.buildtype
$OSType = $os.caption

 You can then work with these values as necessary. For example, if you want to
perform an action only when Windows Vista is installed, you can use the following
technique:

$os = get-wmiobject -class win32_operatingsystem
$OSType = $os.caption

if ($OSType -match "Vista") {
 #Vista is installed; run the commands in this code block
} else {
 #Vista is not installed; run these commands instead
}

 Using the LastBootUpTime property of the Win32_OperatingSystem object, you
can determine how long a computer has been running since it was last started. To
do this, you perform a comparison of the current date and time with the date and
time stored in the LastBootUpTime property. However, because the value stored
in this property is a string rather than a DateTime object, you must fi rst convert

$os = get-wmiobject -class win32_operatingsystem
$AvailMemInMB = $os.totalvisiblememorysize/1kb
$VirtualMemInMB = $os.totalvirtualmemorysize/1kb

$os = get-wmiobject -class win32_operatingsystem
$BootDevice = $os.bootdevice
$SystemDevice = $os.systemdevice
$SystemDirectory = $os.systemdirectory
$BuildType = $os.buildtype
$OSType = $os.caption

$os = get-wmiobject -class win32_operatingsystem
$OSType = $os.caption

if ($OSType -match "Vista") {
 #Vista is installed; run the commands in this code block
} else {
 #Vista is not installed; run these commands instead
}

 Inventorying and Evaluating Windows Systems CHAPTER 9 263

the string value to a DateTime object using the ConvertToDateTime() method. An
example and sample output follows:

$date = get-date
$os = get-wmiobject -class win32_operatingsystem
$uptime = $os.ConvertToDateTime($os.lastbootuptime)
write-host ($date - $uptime)

09:20:57.2639083

 Here, you store the current date and time in the $date variable; then you use
Get-WmiObject to get the Win32_OperatingSystem object. Next, you use the
ConvertToDateTime() method to convert the string value in the LastBootUpTime
property to a DateTime object. Finally, you perform a comparison of the current
date and the boot date and display the difference. In this example, the computer
has been running about 9 hours and 20 minutes.

 You use the Win32_ComputerSystem object and its properties to obtain sum-
mary information regarding the computer confi guration as shown in the following
example and partial output:

Get-WmiObject -Class Win32_ComputerSystem | Format-List *

AdminPasswordStatus : 1

BootupState : Normal boot

ChassisBootupState : 3

KeyboardPasswordStatus : 2

PowerOnPasswordStatus : 1

PowerSupplyState : 3

PowerState : 0

FrontPanelResetStatus : 2

ThermalState : 3

Status : OK

Name : CORPSERVER84

With the Win32_ComputerSystem object, there is a great deal of useful infor-
mation about the computer and its confi guration. Some of the most important
information includes the following:

 The boot-up state and status of the computer, which are tracked in the
 BootUpState and Status properties, respectively.

 The name, DNS host name, domain, and domain role, which are tracked in
the Name, DNSHostName, Domain, and DomainRole properties, respectively.

 The system type and total physical memory, which are tracked in the
 properties SystemType and TotalPhysicalMemory, respectively. Note that
the total memory available is shown in bytes, not kilobytes.

$date = get-date
$os = get-wmiobject -class win32_operatingsystem
$uptime = $os.ConvertToDateTime($os.lastbootuptime)
write-host ($date - $uptime)

09:20:57.2639083

Get-WmiObject -Class Win32_ComputerSystem | Format-List *

AdminPasswordStatus : 1

BootupState : Normal boot

ChassisBootupState : 3

KeyboardPasswordStatus : 2

PowerOnPasswordStatus : 1

PowerSupplyState : 3

PowerState : 0

FrontPanelResetStatus : 2

ThermalState : 3

Status : OK

Name : CORPSERVER84

CHAPTER 9 Inventorying and Evaluating Windows Systems264

The boot-up state and status can help you decide whether you want to modify
the confi guration of a computer, which is helpful when you are working with a
remote computer and you don’t know its current status. In the following example,
you perform one block of commands if the computer is in a normal state and
another block of commands if the computer is in a different state:

$cs = get-wmiobject -class win32_computersystem
$BootUpState = $cs.bootupstate

if ($BootUpState -match "Normal") {
 "Computer is in a normal state, so run these commands."
} else {
 "Computer not in a normal state, so run these commands instead."
}

A computer’s name and domain information also can help you decide whether
you want to work with the computer. For example, although you might want to
reconfi gure desktops and laptops, you might not want to reconfi gure servers and
domain controllers. To help you avoid modifying computers of a specifi c type
 inadvertently, you can perform actions based on a computer’s role as shown in this
example:

$cs = get-wmiobject -class win32_computersystem
$DomainRole = $cs.domainrole

switch –regex ($DomainRole) {
 [0-1] { "This computer is a workstation." }
 [2-3] { "This computer is a server but not a domain controller."}
 [4-5] { "This computer is a domain controller."}
 default { "Unknown value."}
}

In the shift to 64-bit computing, you might want to track which computers in the
enterprise support 64-bit operating systems, which computers are already running
64-bit operating systems, or both. To determine whether a computer has a 64-bit
operating system installed already, you can use the OSArchitecture property of
the Win32_OperatingSystem object. To determine whether a computer supports a
64-bit operating system, you can use the Name and Description properties of the
Win32_Processor object.

You can type the name of each computer to check on a separate line in a text fi le
and store this list in a fi le called computers.txt.

Next, you can use Get-WmiObject to check each of these computers and log
your fi ndings. One approach is shown in the following example:

$comp = get-content computers.txt

#Get list of computers that don't have 64-bit OS installed

$cs = get-wmiobject -class win32_computersystem
$BootUpState = $cs.bootupstate

if ($BootUpState -match "Normal") {
 "Computer is in a normal state, so run these commands."
} else {
 "Computer not in a normal state, so run these commands instead."
}

$cs = get-wmiobject -class win32_computersystem
$DomainRole = $cs.domainrole

switch –regex ($DomainRole) {
 [0-1] { "This computer is a workstation." }
 [2-3] { "This computer is a server but not a domain controller."}
 [4-5] { "This computer is a domain controller."}
 default { "Unknown value."}
}

$comp = get-content computers.txt

#Get list of computers that don't have 64-bit OS installed

 Inventorying and Evaluating Windows Systems CHAPTER 9 265

$comp | foreach {
 $os = get-wmiobject -class win32_operatingsystem -computername $_
 $OSArch = $os.osarchitecture
 if (!($OSArch –match "32-bit")) { add-content $_ -path next.txt }
}

#Determine which computers without 64-bit OS can have 64-bit OS
$comp2 = get-content next.txt
$comp2 | foreach {
 $ps = get-wmiobject -class win32_processor -computername $_
 $SystemType = $ps.description
 if ($SystemType –like "*x64*") { add-content $_ -path final.txt }
}

 Here, you retrieve a list of computer names from a fi le called computers.txt in
the current working directory and store each computer name as an item in an array
called $comp. Then you use a ForEach loop to take an action on each item (computer
name) in the array. As a result, if a computer has a 32-bit operating system installed,
you write the computer’s name to a fi le called next.txt in the current working direc-
tory. When you use $_ in this way, it refers to the current item in a specifi ed array,
which in this case is the name of a computer.

 In the fi nal series of commands, you retrieve the list of computers that don’t have
64-bit operating systems installed and store each computer name as an item in an
array called $comp2. Then you use a ForEach loop to take an action on each item
(computer name) in the array. As a result, if a computer is capable of having a 64-bit
operating system installed, you write the computer’s name to a fi le called fi nal.txt in
the current working directory. The result is a quick but clean approach to inventory-
ing your computers. Any computer listed in fi nal.txt is capable of having a 64-bit
operating system but currently has a 32-bit operating system.

Determining Available Users and Groups

 As part of your inventory of computers in the enterprise, you’ll often want to know
what users and groups have been created and are available. One way to examine
users and groups is to use the Win32_UserAccount and Win32_Group classes. As
shown in the following example and sample output, Win32_UserAccount lists user
accounts by name, domain, and more:

Get-Wmiobject -Class Win32_UserAccount | format-list Caption,Name,Domain

Caption : TECHPC76\Administrator

Name : Administrator

Domain : TECHPC76

Caption : TECHPC76\Barney

Name : Barney

Domain : TECHPC76

$comp | foreach {
$os = get-wmiobject -class win32_operatingsystem -computername $_
$OSArch = $os.osarchitecture
if (!($OSArch –match "32-bit")) { add-content $_ -path next.txt }
}

#Determine which computers without 64-bit OS can have 64-bit OS
$comp2 = get-content next.txt
$comp2 | foreach {
$ps = get-wmiobject -class win32_processor -computername $_
$SystemType = $ps.description
if ($SystemType –like "*x64*") { add-content $_ -path final.txt }
}

Get-Wmiobject -Class Win32_UserAccount | format-list Caption,Name,Domain

Caption : TECHPC76\Administrator

Name : Administrator

Domain : TECHPC76

Caption : TECHPC76\Barney

Name : Barney

Domain : TECHPC76

CHAPTER 9 Inventorying and Evaluating Windows Systems266

Here, you are working with the local computer. If the user or group was created
on the local computer, the computer name is set as the domain. Otherwise, the
Active Directory domain name is set as the domain.

 You can use the –ComputerName parameter to specify the remote computer
or computers that you want to work with and –Credential to specify credentials
required for authentication. To see how these could be used, consider the following
example:

$cred = get-credential
$comp = get-content c:\data\computers.txt
$comp | foreach { Get-Wmiobject -Class Win32_UserAccount `
-ComputerName $_ -Credential $cred }

 Here, you prompt the user for a credential and store the credential in the $cred
variable. Then you retrieve a list of computer names and store each computer name
as an item in an array called $comp. Afterward, you use a ForEach loop to take an
action on each item (computer name) in the array. That action is to list the user
accounts available on the computer.

 TIP You can enter these commands at the PowerShell prompt or use them in scripts.

At the prompt, enter each command separately. In a script, place each command on a

separate line. Either way works and will yield the same results. For continued lines, you

might fi nd it easier to enter the divided lines as a single line. If you do, don’t forget to

remove the continuation character (`).

 Because some scheduled tasks and backup processes require a computer to
have a specifi c local user or group available, you might want to determine whether
computers have this user or group. One way to do this is shown in the following
example:

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account
$comp | foreach {

 $Global:currentc = $_
 $ua = get-wmiobject -class win32_useraccount -computername $_

 $ua | foreach {
 $user = $_.name
 if ($user –eq "sqldb") {add-content $currentc -path valid.txt}
 }
}

 Here, you retrieve a list of computer names from a fi le called computers.txt in
the current working directory and store each computer name as an item in an array

$cred = get-credential
$comp = get-content c:\data\computers.txt
$comp | foreach { Get-Wmiobject -Class Win32_UserAccount `
-ComputerName $_ -Credential $cred }

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account
$comp | foreach {

 $Global:currentc = $_
 $ua = get-wmiobject -class win32_useraccount -computername $_

 $ua | foreach {
 $user = $_.name
 if ($user –eq "sqldb") {add-content $currentc -path valid.txt}
 }
}

 Inventorying and Evaluating Windows Systems CHAPTER 9 267

called $comp. Then you use a ForEach loop to take an action on each item (computer
name) in the $comp array. First, you store the current computer name in a global
variable so that you can access it later. Then you retrieve objects representing all the
user accounts on the computer and store these in an array called $ua. Next, you use
a second ForEach loop to take action on each item (group object) in the $ua array.
As a result, if a computer has a group called SqlDb, you write the computer’s name
to a fi le called valid.txt in the current working directory.

 Because we are using direct matching, you can use the –Filter parameter of the
Get-WmiObject to get only the user account you are looking for in the fi rst place.
The –Filter parameter works like a Where clause in a WMI query. Here is an example
of the revised code:

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account
$comp | foreach {
if (get-wmiobject -class win32_useraccount -computername $_ -filter `
"Name='sqldb'") { add-content $_ -path valid.txt }
}

 Note the syntax for the Where clause in the string passed to the –Filter param-
eter. Because you use double quotes to enclose the string, you must use single
quotes to match a specifi c property value.

 You can work with Win32_Group in much the same way. Although this is a quick
and easy way to inventory users and groups, you’ll want to use the Active Directory
cmdlets to work with and manage users and groups. Other useful Win32 classes for
inventorying computers include Win32_BIOS, Win32_NetworkAdapterConfi gura-
tion, Win32_PhysicalMemory, Win32_Processor, and Win32_LogicalDisk.

Evaluating System Hardware

 When you are working with computers in the enterprise, you’ll often need to obtain
detailed confi guration information for hardware components. This confi guration
information will help you evaluate hardware to ensure it is functioning properly and
help you diagnose and resolve diffi cult issues, such as hardware malfunctions and
improper confi gurations.

Checking Firmware Versions and Status

 A computer’s fi rmware can be the source of many hardware problems. The fi rmware
must be confi gured properly and should be kept current with the latest revision.

 You can use Win32_BIOS to examine the status, version, language, and manu-
facturer of a computer’s BIOS fi rmware. When you are trying to determine whether

$comp = get-content computers.txt

#Get list of computers that don't have the BackUpUser account
$comp | foreach {
if (get-wmiobject -class win32_useraccount -computername $_ -filter `
"Name='sqldb'") { add-content $_ -path valid.txt }
}

CHAPTER 9 Inventorying and Evaluating Windows Systems268

a computer’s BIOS is up to date, look at the SMBIOSBIOSVersion information. An
example and sample output using WIN32_BIOS follow:

get-wmiobject win32_bios | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_BIOS.Name="Default

 System BIOS",SoftwareElementID="Default

 System BIOS",SoftwareElementState=3,

 TargetOperatingSystem=0,Version="GATEWA - 11d"

Status : OK

Name : Default System BIOS

SMBIOSPresent : True

BIOSVersion : {GATEWA - 11d}

CurrentLanguage : enUS

Manufacturer : Intel Corp.

SMBIOSBIOSVersion : LA97510J.15A.0285.2007.0906.0226

 To help keep your computers current, you might want to inventory the fi rmware
versions that are installed and determine whether computers need a fi rmware
 update. The SMBIOSBIOSVersion property provides the value you can use to do this.
In the following example, you retrieve the BIOS version for a group of computers
and store the computer name and BIOS version in a fi le called bioscheck.txt:

$comp = get-content computers.txt

#Store BIOS version for each computer
$comp | foreach {
 $bios = get-wmiobject -class win32_bios -computername $_
 $BiosVersion = $bios.SMBIOSBIOSVersion
 add-content ("$_ $BiosVersion") -path bioscheck.txt
}

 If your organization has standardized its computers, you might want to determine
whether the BIOS version for a group of computers is up to date. One way to do this
is to check to see if the current BIOS version is installed and log information about
computers that have a different BIOS version, as shown in this example:

$comp = get-content computers.txt

$comp | foreach {
 $bios = get-wmiobject -class win32_bios -computername $_
 $BiosVersion = $bios.SMBIOSBIOSVersion
 if (!($BiosVersion –match "LA97510J.15A.0285.2007.0906.0226")) {
 add-content ("$_ $BiosVersion") -path checkfailed.txt }
}

get-wmiobject win32_bios | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_BIOS.Name="Default

 System BIOS",SoftwareElementID="Default

 System BIOS",SoftwareElementState=3,

 TargetOperatingSystem=0,Version="GATEWA - 11d"

Status : OK

Name : Default System BIOS

SMBIOSPresent : True

BIOSVersion : {GATEWA - 11d}

CurrentLanguage : enUS

Manufacturer : Intel Corp.

SMBIOSBIOSVersion : LA97510J.15A.0285.2007.0906.0226

$comp = get-content computers.txt

#Store BIOS version for each computer
$comp | foreach {
 $bios = get-wmiobject -class win32_bios -computername $_
 $BiosVersion = $bios.SMBIOSBIOSVersion
 add-content ("$_ $BiosVersion") -path bioscheck.txt
}

$comp = get-content computers.txt

$comp | foreach {
 $bios = get-wmiobject -class win32_bios -computername $_
 $BiosVersion = $bios.SMBIOSBIOSVersion
 if (!($BiosVersion –match "LA97510J.15A.0285.2007.0906.0226")) {
 add-content ("$_ $BiosVersion") -path checkfailed.txt }
}

 Inventorying and Evaluating Windows Systems CHAPTER 9 269

Checking Physical Memory and Processors

 Few things affect a computer’s performance more than the physical memory
and processors that are installed. You’ll want to ensure computers have adequate
memory and processors to support their daily tasks.

 You can use Win32_PhysicalMemory to get detailed information for each individual
DIMM of memory on a computer as well as status indicators that could indicate
problems. A DIMM is a group of memory chips on a card handled as a single unit.

 Many computers have an even number of memory card banks, such as two or
four. A computer’s memory cards should all have the same data width and speed.
An example and sample output using Win32_PhysicalMemory follow:

get-wmiobject Win32_PhysicalMemory | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_PhysicalMemory.Tag="Physical Memory

0"

BankLabel : CHAN A DIMM 0

Capacity : 1073741824

Caption : Physical Memory

DataWidth : 64

Description : Physical Memory

DeviceLocator : J6H1

FormFactor : 8

HotSwappable :

InstallDate :

InterleaveDataDepth : 1

InterleavePosition : 1

Manufacturer : 0xAD00000000000000

MemoryType : 21

Model :

Name : Physical Memory

Speed : 667

Status :

Tag : Physical Memory 0

TotalWidth : 64

TypeDetail : 128

Version :

 The BankLabel entry shows the channel and DIMM number, such as CHAN A
DIMM 0. Capacity is shown in bytes. To quickly convert the value provided to
megabytes, copy the value and paste it at the PowerShell prompt and then type
/1mb, such as 1073741824/1mb.

 The Status entry tells you the current error status. The error status can help you
identify a malfunctioning DIMM. The error status also can help you identify a DIMM
that is not valid for the computer.

get-wmiobject Win32_PhysicalMemory | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_PhysicalMemory.Tag="Physical Memory

0"

BankLabel : CHAN A DIMM 0

Capacity : 1073741824

Caption : Physical Memory

DataWidth : 64

Description : Physical Memory

DeviceLocator : J6H1

FormFactor : 8

HotSwappable :

InstallDate :

InterleaveDataDepth : 1

InterleavePosition : 1

Manufacturer : 0xAD00000000000000

MemoryType : 21

Model :

Name : Physical Memory

Speed : 667

Status :

Tag : Physical Memory 0

TotalWidth : 64

TypeDetail : 128

Version :

CHAPTER 9 Inventorying and Evaluating Windows Systems270

REAL WORLD Windows Vista and later versions of Windows have built-in features

to help you identify and diagnose problems with memory. If you suspect a computer

has a memory problem that isn’t being automatically detected, you can run the

 Windows Memory Diagnostics utility by completing the following steps:

 1. Click Start, type mdsched.exe in the Search box, and then press Enter.

 2. Choose whether to restart the computer and run the tool immediately or

schedule the tool to run at the next restart.

 3. Windows Memory Diagnostics runs automatically after the computer restarts

and performs a standard memory test automatically. If you want to perform

fewer or more tests, press F1, use the Up and Down arrow keys to set the Test

Mix as Basic, Standard, or Extended, and then press F10 to apply the desired

settings and resume testing.

 4. When testing is completed, the computer restarts automatically. You’ll see the

test results when you log on.

Note also that if a computer crashes because of failing memory, and Windows Memory

Diagnostics detects this, you are prompted to schedule a memory test the next time

the computer is restarted.

The total memory capacity is the sum of the capacity of all memory banks on the
computer. As discussed in Chapter 6, “Mastering Aliases, Functions, and Objects,”
the Win32_PhysicalMemoryArray class has a MaxCapacity property that tracks the
total physical memory in kilobytes as well as a MemoryDevices property that tracks
the number of memory banks.

You can use Win32_Processor to get detailed information about each processor
on a computer. When you are working with processors, note the clock speed, data
width, deviceID, and cache details as well as the number of cores and number of
logical processor. A single processor might have multiple processor cores, and
each of those processor cores might have a logical representation. Processor cache
 usually is shown in kilobytes. While most desktop computers have only L2 cache,
many servers will have L3 and additional cache. An example and sample output
 using Win32_Processor follow:

get-wmiobject Win32_Processor | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_Processor.DeviceID="CPU0"

CpuStatus : 1

CreationClassName : Win32_Processor

CurrentClockSpeed : 2660

CurrentVoltage : 16

DataWidth : 64

Description : x64 Family 6 Model 15 Stepping 7

DeviceID : CPU0

ErrorCleared :

get-wmiobject Win32_Processor | format-list * |
Out-File -append -filepath save.txt

__PATH : \\ENGPC42\root\cimv2:Win32_Processor.DeviceID="CPU0"

CpuStatus : 1

CreationClassName : Win32_Processor

CurrentClockSpeed : 2660

CurrentVoltage : 16

DataWidth : 64

Description : x64 Family 6 Model 15 Stepping 7

DeviceID : CPU0

ErrorCleared :

 Inventorying and Evaluating Windows Systems CHAPTER 9 271

ErrorDescription :

ExtClock : 266

Family : 190

InstallDate :

L2CacheSize : 4096

L2CacheSpeed :

L3CacheSize : 0

L3CacheSpeed : 0

LastErrorCode :

Level : 6

LoadPercentage : 2

Manufacturer : GenuineIntel

MaxClockSpeed : 2660

Name : Intel(R) Core(TM)2 Quad CPU @ 2.66GHz

NumberOfCores : 4

NumberOfLogicalProcessors : 4

PowerManagementCapabilities :

PowerManagementSupported : False

ProcessorId : BFEBFBFF000006F7

ProcessorType : 3

Revision : 3847

Role : CPU

SocketDesignation : LGA 775

Status : OK

 In the output, note the ErrorCleared, ErrorDescription, and Status properties.
These properties can help you identify a malfunctioning processor. Note error
details or error conditions that are shown, and take corrective action as appropriate.
For example, if a processor has an error status that restarting the computer doesn’t
resolve, you might need to service the motherboard, the processor, or both. In
some cases, updating the motherboard fi rmware can resolve intermittent errors.

Checking Hard Disks and Partitions

 Hard disks are used to store data. Computers need enough disk space to accommo-
date the operating system fi les, the working environment, and user data. To ensure
proper performance, hard disks need ample free space as well because this ensures
housekeeping tasks and disk cleanup activities can be performed automatically as
necessary.

 WMI provides several Win32 classes for working with disk drives. Using Win32_
DiskDrive, you can work with physical drives, including both fi xed hard drives and
USB reader devices. If you want to see only a computer’s fi xed hard disks, you can
fi lter on the media type as shown in the following example and sample output:

get-wmiobject -class win32_diskdrive -filter '
"MediaType='Fixed hard disk media'"

ErrorDescription :

ExtClock : 266

Family : 190

InstallDate :

L2CacheSize : 4096

L2CacheSpeed :

L3CacheSize : 0

L3CacheSpeed : 0

LastErrorCode :

Level : 6

LoadPercentage : 2

Manufacturer : GenuineIntel

MaxClockSpeed : 2660

Name : Intel(R) Core(TM)2 Quad CPU @ 2.66GHz

NumberOfCores : 4

NumberOfLogicalProcessors : 4

PowerManagementCapabilities :

PowerManagementSupported : False

ProcessorId : BFEBFBFF000006F7

ProcessorType : 3

Revision : 3847

Role : CPU

SocketDesignation : LGA 775

Status : OK

get-wmiobject -class win32_diskdrive -filter '
"MediaType='Fixed hard disk media'"

CHAPTER 9 Inventorying and Evaluating Windows Systems272

Partitions : 2

DeviceID : \\.\PHYSICALDRIVE0

Model : ST3500630AS

Size : 500105249280

Caption : ST3500630AS

Partitions : 1

DeviceID : \\.\PHYSICALDRIVE1

Model : ST3500630AS

Size : 500105249280

Caption : ST3500630AS

The computer in this example has two fi xed hard drives. PhysicalDrive0 has two
disk partitions. PhysicalDrive1 has one disk partition.

 If you fi lter the output by the device ID or caption, you can get information
that is more detailed for individual fi xed hard drives. In the following example and
sample output, you examine a fi xed hard drive by its caption:

get-wmiobject -class win32_diskdrive -filter "Caption='ST3500630AS'" |
format-list *

ConfigManagerErrorCode : 0

LastErrorCode :

NeedsCleaning :

Status : OK

DeviceID : \\.\PHYSICALDRIVE0

StatusInfo :

Partitions : 2

BytesPerSector : 512

ConfigManagerUserConfig : False

DefaultBlockSize :

Index : 0

InstallDate :

InterfaceType : SCSI

SectorsPerTrack : 63

Size : 500105249280

TotalCylinders : 60801

TotalHeads : 255

TotalSectors : 976768065

TotalTracks : 15504255

TracksPerCylinder : 255

Caption : ST3500630AS

CompressionMethod :

ErrorCleared :

ErrorDescription :

ErrorMethodology :

FirmwareRevision : 3.AA

Partitions : 2

DeviceID : \\.\PHYSICALDRIVE0

Model : ST3500630AS

Size : 500105249280

Caption : ST3500630AS

Partitions : 1

DeviceID : \\.\PHYSICALDRIVE1

Model : ST3500630AS

Size : 500105249280

Caption : ST3500630AS

get-wmiobject -class win32_diskdrive -filter "Caption='ST3500630AS'" |
format-list *

ConfigManagerErrorCode : 0

LastErrorCode :

NeedsCleaning :

Status : OK

DeviceID : \\.\PHYSICALDRIVE0

StatusInfo :

Partitions : 2

BytesPerSector : 512

ConfigManagerUserConfig : False

DefaultBlockSize :

Index : 0

InstallDate :

InterfaceType : SCSI

SectorsPerTrack : 63

Size : 500105249280

TotalCylinders : 60801

TotalHeads : 255

TotalSectors : 976768065

TotalTracks : 15504255

TracksPerCylinder : 255

Caption : ST3500630AS

CompressionMethod :

ErrorCleared :

ErrorDescription :

ErrorMethodology :

FirmwareRevision : 3.AA

 Inventorying and Evaluating Windows Systems CHAPTER 9 273

Manufacturer : (Standard disk drives)

MediaLoaded : True

MediaType : Fixed hard disk media

Model : ST3500630AS

Name : \\.\PHYSICALDRIVE0

SCSIBus : 0

SCSILogicalUnit : 0

SCSIPort : 0

SCSITargetId : 0

 As you can see, the detailed information tells you the exact confi guration of the
physical device, including:

 The number of bytes per sector, sectors per track, and tracks per cylinder.

 The interface type, such as SCSI or IDE.

 The size in bytes. Divide the value by 1gb to get the size in gigabytes.

 The total number of cylinders, heads, sectors, and tracks.

 The bus, logical unit, port, and target ID.

 In the output, note the ErrorCleared, ErrorDescription, ErrorMethodology, and
Status properties. These properties can help you identify a malfunctioning disk.
Note error details or error conditions that are shown, and take corrective action as
appropriate. For example, if a processor has an error status that restarting the com-
puter doesn’t resolve, you might need to service the hardware controller, the hard
disk, or both. In some cases, updating the controller fi rmware can resolve intermit-
tent errors.

 You can use Win32_DiskPartition to obtain partitioning details for each fi xed
hard disk on the computer. The partitions correspond exactly to how you’ve parti-
tioned fi xed hard disks using Disk Management. As shown in the following example
and sample output, each partition of each fi xed hard disk is accessible:

get-wmiobject -class win32_diskpartition

NumberOfBlocks : 18603207

BootPartition : False

Name : Disk #0, Partition #0

PrimaryPartition : True

Size : 9524841984

Index : 0

NumberOfBlocks : 958164795

BootPartition : True

Name : Disk #0, Partition #1

PrimaryPartition : True

Size : 490580375040

Index : 1

Manufacturer : (Standard disk drives)

MediaLoaded : True

MediaType : Fixed hard disk media

Model : ST3500630AS

Name : \\.\PHYSICALDRIVE0

SCSIBus : 0

SCSILogicalUnit : 0

SCSIPort : 0

SCSITargetId : 0

get-wmiobject -class win32_diskpartition

NumberOfBlocks : 18603207

BootPartition : False

Name : Disk #0, Partition #0

PrimaryPartition : True

Size : 9524841984

Index : 0

NumberOfBlocks : 958164795

BootPartition : True

Name : Disk #0, Partition #1

PrimaryPartition : True

Size : 490580375040

Index : 1

CHAPTER 9 Inventorying and Evaluating Windows Systems274

NumberOfBlocks : 976768002

BootPartition : False

Name : Disk #1, Partition #0

PrimaryPartition : True

Size : 500105217024

Index : 0

 The key information you need to know is listed as part of the standard output, so
you might not need to view the extended properties. In this example, the computer
has two fi xed hard disks: Disk 0 and Disk 1. Disk 0 has two partitions: Partition 0
and Partition 1. Disk 1 has one partition: Partition 0. Because partition size is shown
in bytes, you can divide the value listed by 1gb to get the size of the partition in
gigabytes.

 Windows represents formatted disk partitions as logical disks. The WMI object
you can use to work with logical disks is Win32_LogicalDisk, which you can use to
get detailed information for each logical disk on a computer. However, note that
removable disks, CD/DVD drives, and paths assigned drive letters are also represented
as logical disks. You can distinguish among these elements using the Description
property. Values you’ll see include:

 CD-ROM Disc, for CD/DVD drives

 Removable Disk, for removable disks

 Local Fixed Disk, for fi xed hard drives

 When you are working with the logical representation of partitions on fi xed hard
disks, note the device ID, compression status, fi le system type, free space, size, and
supported options. DeviceID shows the drive designator, such as C:. An example and
sample output using Win32_LogicalDisk follow:

get-wmiobject -class win32_logicaldisk -filter "name='c:'" |
format-list * | Out-File -append -filepath save.txt

Status :

Availability :

DeviceID : C:

StatusInfo :

Access : 0

BlockSize :

Caption : C:

Compressed : False

ConfigManagerErrorCode :

ConfigManagerUserConfig :

CreationClassName : Win32_LogicalDisk

Description : Local Fixed Disk

DriveType : 3

FileSystem : NTFS

NumberOfBlocks : 976768002

BootPartition : False

Name : Disk #1, Partition #0

PrimaryPartition : True

Size : 500105217024

Index : 0

get-wmiobject -class win32_logicaldisk -filter "name='c:'" |
format-list * | Out-File -append -filepath save.txt

Status :

Availability :

DeviceID : C:

StatusInfo :

Access : 0

BlockSize :

Caption : C:

Compressed : False

ConfigManagerErrorCode :

ConfigManagerUserConfig :

CreationClassName : Win32_LogicalDisk

Description : Local Fixed Disk

DriveType : 3

FileSystem : NTFS

 Inventorying and Evaluating Windows Systems CHAPTER 9 275

FreeSpace : 298870042624

InstallDate :

LastErrorCode :

MaximumComponentLength : 255

MediaType : 12

Name : C:

NumberOfBlocks :

QuotasDisabled : True

QuotasIncomplete : False

QuotasRebuilding : False

Size : 490580373504

SupportsDiskQuotas : True

SupportsFileBasedCompression : True

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

VolumeDirty : False

VolumeName :

VolumeSerialNumber : 008EA097

 The FreeSpace and Size properties are shown in bytes. To quickly convert the
value provided to gigabytes, copy the value, paste it at the PowerShell prompt,
and then type /1gb, such as 302779912192/1gb. Here is an example and sample
output:

$dr = get-wmiobject -class win32_logicaldisk -filter "name='c:'"
$free = [Math]::Round($dr.freespace/1gb)
$capacity = [Math]::Round($dr.size/1gb)

write-host $dr.name "on" $dr.systemname
write-host "Disk Capacity: $capacity"
write-host "Free Space: $free"

C: on ENGPC42

Disk Capacity: 457

Free Space: 278

Checking and Managing Device Drivers

 Computers can have all sorts of hardware devices installed on and connected to
them. Because all of these devices require device drivers to operate properly, you’ll
often want to know detailed information about a particular device’s driver. For
example, you might want to know whether the device driver is:

 Enabled or disabled.

 Running or stopped.

 Confi gured to start automatically.

FreeSpace : 298870042624

InstallDate :

LastErrorCode :

MaximumComponentLength : 255

MediaType : 12

Name : C:

NumberOfBlocks :

QuotasDisabled : True

QuotasIncomplete : False

QuotasRebuilding : False

Size : 490580373504

SupportsDiskQuotas : True

SupportsFileBasedCompression : True

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

VolumeDirty : False

VolumeName :

VolumeSerialNumber : 008EA097

$dr = get-wmiobject -class win32_logicaldisk -filter "name='c:'"
$free = [Math]::Round($dr.freespace/1gb)
$capacity = [Math]::Round($dr.size/1gb)

write-host $dr.name "on" $dr.systemname
write-host "Disk Capacity: $capacity"
write-host "Free Space: $free"

C: on ENGPC42

Disk Capacity: 457

Free Space: 278

CHAPTER 9 Inventorying and Evaluating Windows Systems276

The Win32 class for working with device drivers is Win32_SystemDriver. Using
Win32_SystemDriver, you can obtain detailed confi guration and status information
on any device driver confi gured for use on a computer. You can examine device
drivers by device display name using the DisplayName property, by state using the
State property, or by start mode using the StartMode property. The display name
for a device and its driver is the same as the one shown in Device Manager.

In the following example, you use the DisplayName property to check the RAID
controller on a computer:

get-wmiobject -class win32_systemdriver | where-object '
{$_.displayname -like "*raid c*"} | format-list *

Status : OK

Name : iaStor

State : Running

ExitCode : 0

Started : True

ServiceSpecificExitCode : 0

AcceptPause : False

AcceptStop : True

Caption : Intel RAID Controller

CreationClassName : Win32_SystemDriver

Description : Intel RAID Controller

DesktopInteract : False

DisplayName : Intel RAID Controller

ErrorControl : Normal

InstallDate :

PathName : C:\Windows\system32\drivers\iastor.sys

ServiceType : Kernel Driver

StartMode : Boot

StartName :

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

TagId : 25

Site :

Container :

Generally, State is shown as either Running or Stopped. Knowing this, you can
check for device drivers in either state as shown in the following example and
sample output:

get-wmiobject -class win32_systemdriver -filter "state='Running'"

DisplayName : Microsoft ACPI Driver

Name : ACPI

State : Running

Status : OK

get-wmiobject -class win32_systemdriver | where-object '
{$_.displayname -like "*raid c*"} | format-list *

Status : OK

Name : iaStor

State : Running

ExitCode : 0

Started : True

ServiceSpecificExitCode : 0

AcceptPause : False

AcceptStop : True

Caption : Intel RAID Controller

CreationClassName : Win32_SystemDriver

Description : Intel RAID Controller

DesktopInteract : False

DisplayName : Intel RAID Controller

ErrorControl : Normal

InstallDate :

PathName : C:\Windows\system32\drivers\iastor.sys

ServiceType : Kernel Driver

StartMode : Boot

StartName :

SystemCreationClassName : Win32_ComputerSystem

SystemName : ENGPC42

TagId : 25

Site :

Container :

get-wmiobject -class win32_systemdriver -filter "state='Running'"

DisplayName : Microsoft ACPI Driver

Name : ACPI

State : Running

Status : OK

 Inventorying and Evaluating Windows Systems CHAPTER 9 277

Started : True

DisplayName : Ancillary Function Driver for Winsock

Name : AFD

State : Running

Status : OK

Started : True

 The start mode can be set as:

 Boot Used for boot device drivers

 Manual Used for device drivers that are started manually

 Auto Used for device drivers that are started automatically

 System Used for system device drivers

 Using StartMode for your fi lter, you can list boot device drivers as shown in the
following example:

get-wmiobject -class win32_systemdriver -filter "startmode='Boot'"

 The Win32_SystemDriver class provides a number of methods for managing
system drivers. These methods include:

 Change() Changes the device driver confi guration. It accepts the following
parameters in the following order: DisplayName, PathName, ServiceType-
Byte, ErrorControlByte, StartMode, DesktopInteractBoolean, StartName,
StartPassword, LoadOrderGroup, LoadOrderGroupDependenciesArray, and
ServiceDependenciesArray.

 CAUTION Modifying devices at the PowerShell prompt is not something you

should do without careful forethought. PowerShell lets you make changes that will

make your computer unbootable. Before you make any changes to devices, you

should create a system restore point as discussed in Chapter 12, “Managing and

Securing the Registry.” You also might want to consider performing a full backup

of the computer.

 ChangeStartMode() Changes the start mode of the device driver. It
accepts a single parameter, which is the start mode to use. Valid values
are boot, manual, auto, or system.

 CAUTION Before you change the start mode of a device driver, ensure the driver

supports this start mode. You also should ensure that the start mode won’t affect

the computer’s ability to start.

 Delete() Deletes the device driver (if the device is in a state that allows
this). Deleting the device driver doesn’t prevent the device from being used.
To prevent the device from being used, you should disable it instead. If you

Started : True

DisplayName : Ancillary Function Driver for Winsock

Name : AFD

State : Running

Status : OK

Started : True

get-wmiobject -class win32_systemdriver -filter "startmode='Boot'"

CHAPTER 9 Inventorying and Evaluating Windows Systems278

delete a device driver without disabling a device, Windows will, in most
cases, detect and reinstall the device the next time the computer is started.
As part of troubleshooting, you can sometimes delete a device’s driver to
force Windows to reinstall the device.

CAUTION Exercise extreme caution if you plan to delete device drivers using

PowerShell. PowerShell will not warn you if you are making harmful changes to

your computer.

 InterrogateService() Connects to the device using the device driver. If the
return value is zero, WMI was able to connect to and interrogate the device
using the device driver. If the return value isn’t zero, WMI encountered a
problem while trying to communicate with the device using the device
driver. If the device is stopped or paused, this method always returns an
error status.

 PauseService() Pauses the device, which might be necessary during
troubleshooting or diagnostics. Devices that can be paused indicate this
when the AcceptPause property is set to True for their device drivers. Further,
you can pause only a device that is in a state where pausing is permitted.

 ResumeService() Resumes the device after it has been paused.

 StopService() Stops the device, which might be necessary during trouble-
shooting or diagnostics. Devices that can be stopped indicate this when the
AcceptStop property is set to True for their device drivers. Further, you can
stop only a device that is in a state where stopping is permitted.

 StartService() Starts a stopped device, including devices that are confi g-
ured for manual start up.

If you want to change the start mode for a device driver, you can use the
Change StartMode() method to specify the desired start mode. The basic syntax is

$driverObject.ChangeStartMode(StartMode)

where $driverObject is a reference to a Win32_SystemDriver object, and StartMode
is the desired start mode entered as a string value, as shown in this example and
sample output:

$d = get-wmiobject -class win32_systemdriver | where-object '
{$_.displayname -like "creative audio*"}
$d.changestartmode("auto")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

$d = get-wmiobject -class win32_systemdriver | where-object '
{$_.displayname -like "creative audio*"}
$d.changestartmode("auto")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

 Inventorying and Evaluating Windows Systems CHAPTER 9 279

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

 Here, you set the start mode to Auto for a Creative Audio device. The return
value in the output is what you want to focus on. A return value of 0 (zero) indicates
success. Any other return value indicates an error. Typically, errors occur because
you aren’t using an elevated administrator PowerShell prompt, you haven’t accessed
the correct device driver, or the device isn’t in a state in which it can be confi gured.
Keep in mind that if you alter the confi guration of required device drivers, you
might not be able to start the computer. Because of this, don’t make any changes to
device drivers without careful planning and forethought.

Digging In Even More

 Want to really dig in and explore what’s available on a computer? Enter the follow-
ing command as a single line to list every available .NET type:

[System.AppDomain]::CurrentDomain.GetAssemblies() |
Foreach-Object { $_.GetTypes() }

 You can expand on this idea by creating a function and then calling this function
with various fi lters to fi nd specifi c .NET types. The code for a ListType function follows:

function ListType() {
 [System.AppDomain]::CurrentDomain.GetAssemblies() |
 Foreach-Object { $_.GetTypes() }
}

 To list all .NET types, you can call the ListType function without any fi lters, as
shown in this example:

ListType

 You can view specifi c .NET types if you check for names that are like a specifi ed
value. For example, to list all .NET types with “parser” as part of the name, you could
enter

ListType | ? { $_.Name -like "*parser*" }

 To learn more about a .NET type, you can look at the constructors for the type.
The following example lists the constructors for all .NET types with “parser” as part
of the name:

ListType | ? { $_.Name -like "*parser*" } |
 % { $_.GetConstructors() }

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

[System.AppDomain]::CurrentDomain.GetAssemblies() |
Foreach-Object { $_.GetTypes() }

function ListType() {
 [System.AppDomain]::CurrentDomain.GetAssemblies() |
 Foreach-Object { $_.GetTypes() }
}

CHAPTER 9 Inventorying and Evaluating Windows Systems280

Pretty cool. However, not every .NET type is loaded for use. Therefore, to use a
.NET type you fi nd, you might need to load it before you use it.

 Another cool trick is to examine the available COM objects on a computer. COM
objects are registered in the registry, and by exploring the appropriate registry
branches, you can fi nd COM objects that are registered for use on the computer. A
function for checking the registry follows:

function ListProgID {
 param()
 $paths = @("REGISTRY::HKEY_CLASSES_ROOT\CLSID")
 if ($env:Processor_Architecture -eq "amd64") {
 $paths+="REGISTRY::HKEY_CLASSES_ROOT\Wow6432Node\CLSID" }
 Get-ChildItem $paths -include VersionIndependentPROGID -recurse |
 Select-Object @{
 Name='ProgID'
 Expression={$_.GetValue("")}
 }, @{
 Name='Type'
 Expression={
 if ($env:Processor_Architecture -eq "amd64") { "Wow6432" }
 else { "32-bit" }
 }
 }
}

 Here, you check the processor architecture on the computer. If the computer
is running a 32-bit operating system, you look under HKEY_CLASSES_ROOT\CLSID
for 32-bit COM objects. If the computer is running a 64-bit operating system, you
look under HKEY_CLASSES_ROOT\CLSID for 32-bit COM objects and under HKEY_
CLASSES_ROOT\Wow6432Node\CLSID for additional COM objects. You then list the
registered COM objects by their progID and type.

 To use this function to list all COM objects by their ProgID and type, you could
enter the following command:

ListProgID

 You can view specifi c COM objects if you check for names that are like a specifi ed
value. For example, to list all COM objects with “Microsoft” as part of the name, you
could enter

ListProgID | Where-Object { $_.ProgID -like "*Microsoft*" }

 Have fun; there’s a lot here to explore. For more information on objects, .NET
types, and COM objects, see “Working with Objects” and “Working with COM and
.NET Framework Objects” in Chapter 6.

function ListProgID {
 param()
 $paths = @("REGISTRY::HKEY_CLASSES_ROOT\CLSID")
 if ($env:Processor_Architecture -eq "amd64") {
 $paths+="REGISTRY::HKEY_CLASSES_ROOT\Wow6432Node\CLSID" }
 Get-ChildItem $paths -include VersionIndependentPROGID -recurse |
 Select-Object @{
 Name='ProgID'
 Expression={$_.GetValue("")}
 }, @{
 Name='Type'
 Expression={
 if ($env:Processor_Architecture -eq "amd64") { "Wow6432" }
 else { "32-bit" }
 }
 }
}

281

CHAP TER 10

Managing File Systems,
Security, and Auditing

Managing PowerShell Drives, Directories, and Files 281

Working with File Contents 286

Accessing Security Descriptors 289

Configuring File and Directory Permissions 296

Configuring File and Directory Auditing 305

In this chapter, you’ll learn techniques for managing file systems and security—
and there’s a lot more flexibility to this than most people realize. You can create,

copy, move, and delete individual directories and files. You can read and write
files, and you also can append data to files and clear the contents of files. You
can examine and set access control lists on directories and files, and you also can
take ownership of directories and files. Moreover, because you are working with
Windows PowerShell, it’s just as easy to manipulate multiple directories and files
matching specific parameters you specify as it is to work with individual directories
and files.

Managing PowerShell Drives, Directories, and Files

You can use PowerShell to manage drives, directories, and files. The core set of
features for performing related procedures were discussed previously in the “Using
Providers” section in Chapter 3, “Managing Your PowerShell Environment,” and
include the FileSystem provider, the cmdlets for working with data stores listed in
Table 3-4, and the cmdlets for working with provider drives listed in Table 3-5.

CHAPTER 10 Managing File Systems, Security, and Auditing 282

Adding and Removing PowerShell Drives

Using the Get-PSDrive cmdlet, you can view the PowerShell drives that currently are
available. As the following example and sample output shows, this includes actual
drives and the resources PowerShell lets you work with as if they were drives:

get-psdrive

Name Provider Root

---- -------- ----

Alias Alias

C FileSystem C:\

cert Certificate \

D FileSystem D:\

E FileSystem E:\

Env Environment

F FileSystem F:\

Function Function

G FileSystem G:\

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem I:\

J FileSystem J:\

K FileSystem K:\

L FileSystem L:\

M FileSystem M:\

N FileSystem N:\

O FileSystem O:\

P FileSystem P:\

Q FileSystem Q:\

Variable Variable

W FileSystem W:\

WSMan WSMan

X FileSystem X:\

Y FileSystem Y:\

Z FileSystem Z:\

NOTE To query multiple computers, use the Invoke-Command cmdlet as discussed

in Chapter 4, “Using Sessions, Jobs, and Remoting.” Here is an example:

invoke-command -computername Server43, Server27, Server82
-scriptblock { get-psdrive }

 You can change the working location to any of these drives using Set-Location.
Simply follow the cmdlet name with the desired drive or path relative to a drive,
such as

set-location c:

get-psdrive

Name Provider Root

---- -------- ----

Alias Alias

C FileSystem C:\

cert Certificate \

D FileSystem D:\

E FileSystem E:\

Env Environment

F FileSystem F:\

Function Function

G FileSystem G:\

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

I FileSystem I:\

J FileSystem J:\

K FileSystem K:\

L FileSystem L:\

M FileSystem M:\

N FileSystem N:\

O FileSystem O:\

P FileSystem P:\

Q FileSystem Q:\

Variable Variable

W FileSystem W:\

WSMan WSMan

X FileSystem X:\

Y FileSystem Y:\

Z FileSystem Z:\

invoke-command -computername Server43, Server27, Server82
-scriptblock { get-psdrive }

set-location c:

 Managing File Systems, Security, and Auditing CHAPTER 10 283

 or

set-location c:\logs

 When you switch drives using only the drive designator, PowerShell remembers
the working path, allowing you to return to the previous working path on a drive
simply by referencing the drive designator. See the “Navigating and Using Provider
Drives” section in Chapter 3 for more information.

 You can use the New-PSDrive cmdlet to create a PowerShell drive that is mapped
to a location in a data store, which can include a shared network folder, local direc-
tory, or registry key. The drive acts as a shortcut and is available only in the current
PowerShell console. For example, if you frequently work with the C:\Data\Current\
History\Files directory, you might want to create a new drive to quickly reference
this location. When you create a drive, you specify the alias to the drive using the
–Name parameter, the provider type using the –PSProvider parameter, and the
root path using the –Root parameter, as shown in this example:

new-psdrive –name hfiles –psprovider filesystem –root c:\data\current\
history\files

 Here, you create a drive called hfi les as a FileSystem type to act as a shortcut to
C:\Data\Current\History\Files. You can switch to this drive by typing set-location

hfi les:. As long as you have the appropriate permissions to create drives, the cre-
ation process should be successful. A common error you might see occurs when a
like-named drive already exists.

 Because the drive exists only in the current PowerShell session, the drive ceases
to exist when you exit the PowerShell console. You also can remove a drive using
Remove-PSDrive. Although you can remove drives you added to the console, you
cannot delete Windows drives or mapped network drives created by using other
methods.

 NOTE You can create a drive that maps to registry locations as well. If you do, the

PSProvider type to reference is registry. Type get-psprovider to list all available

provider types.

Creating and Managing Directories and Files

 In PowerShell, you work with directories and fi les in much the same way. You view
directories and fi les using Get-ChildItem as shown in many previous examples. To
create directories and fi les, you use New-Item. The basic syntax is

new-item –type [Directory | File] –path Path

set-location c:\logs

new-psdrive –name hfiles –psprovider filesystem –root c:\data\current\
history\files

CHAPTER 10 Managing File Systems, Security, and Auditing 284

where you specify the type of item you are creating as either Directory or File
and then use Path to specify where the directory or fi le should be created. When
you create a directory or fi le, New-Item displays results that confi rm the creation
process. In the following example, you create a C:\Logs\Backup directory, and the
resulting output confi rms that the directory was successfully created:

new-item -type directory -path c:\logs\backup

 Directory: C:\logs

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 2/18/2009 4:54 PM backup

NOTE To create directories and fi les on remote computers, use the Invoke-Command

cmdlet as discussed in Chapter 4. Here is an example:

invoke-command -computername Server43, Server27, Server82
-scriptblock { new-item -type directory -path c:\logs\backup }

As long as you have the appropriate permissions to create a directory or fi le in the
specifi ed location, the creation process should be successful. The New-Item cmdlet
even creates any required subdirectories for you automatically. In this example, if
the C:\Logs directory doesn’t exist, PowerShell creates this directory and then
creates the Backup subdirectory. When you create a fi le, PowerShell creates an
empty fi le with no contents.

Using similar procedures, you can copy, move, rename, and delete directories
and fi les.

Copying Directories and Files

You can copy directories and fi les using Copy-Item. The basic syntax for directories
and their contents is

copy-item SourcePath DestinationPath -recurse

where SourcePath is the path to the directory to copy, and DestinationPath is where
you’d like to create a copy of the directory. In the following example, you copy the
C:\Logs directory (and all its contents) to C:\Logs_Old:

copy-item c:\logs c:\logs_old -recurse

 The command will create the Logs_Old directory if it does not already exist. The
basic syntax for copying fi les is

copy-item PathToSourceFile DestinationPath

new-item -type directory -path c:\logs\backup

 Directory: C:\logs

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 2/18/2009 4:54 PM backup

invoke-command -computername Server43, Server27, Server82
-scriptblock { new-item -type directory -path c:\logs\backup }

copy-item c:\logs c:\logs_old -recurse

 Managing File Systems, Security, and Auditing CHAPTER 10 285

 where PathToSourceFile is the path to the fi le or fi les to copy, and DestinationPath is
where you’d like to create a copy of the fi le or fi les. In the following example, you
copy all the .txt fi les in the C:\Logs directory to C:\Logs_Old:

copy-item c:\logs*.txt c:\logs_old

 As long as you have the appropriate permissions, you should be able to copy
directories and fi les. You can use Copy-Item to copy resources across volumes as
shown in the following example:

copy-item c:\logs d:\logs_old -recurse

Moving Directories and Files

 You can move directories and fi les using Move-Item. The basic syntax is

move-item SourcePath DestinationPath

 where SourcePath is the current path to the directory or fi le, and DestinationPath is
the new path for the directory or fi le. When you move a directory or fi le, Move-Item
displays an error that indicates failure but doesn’t display any output to indicate
success. In the following example, you move the C:\Logs directory (and all its contents)
to C:\Backup\Logs:

move-item c:\logs c:\backup\logs

 The following command moves all the .txt files in the C:\Logs directory to
C:\Backup\Logs:

move-item c:\logs*.txt c:\backup\logs

 As long as you have the appropriate permissions, you should be able to move
directories and fi les. However, some caveats apply. Because you cannot use Move-
Item to move resources across volumes, the source and destination path must
have identical roots. If fi les in a directory are in use, a fi le is in use, or a directory is
shared, you won’t be able to move the directory or fi le.

Renaming Directories and Files

 To rename directories and fi les, you use the Rename-Item cmdlet. Rename-Item has
the following syntax:

rename-item OriginalNamePath NewName

 where OriginalNamePath is the full path to the directory or fi le, and NewName is the
new name for the directory or fi le. In the following example, you rename Log1.txt
in the C:\Logs directory as Log1_hist.txt:

rename-item c:\logs\log1.txt log1_hist.txt

copy-item c:\logs*.txt c:\logs_old

copy-item c:\logs d:\logs_old -recurse

move-item c:\logs c:\backup\logs

move-item c:\logs*.txt c:\backup\logs

rename-item c:\logs\log1.txt log1_hist.txt

CHAPTER 10 Managing File Systems, Security, and Auditing 286

As long as you have the appropriate permissions, you should be able to rename
directories and fi les. However, if fi les in a directory are in use, a fi le is in use, or a
directory is shared, you won’t be able to rename the directory or fi le.

Deleting Directories and Files

You can delete directories and fi les using the Remove-Item cmdlet. Remove-Item
has the following syntax:

remove-item NamePath [-force]

where NamePath is the full path to the directory or fi le that you want to remove,
and –Force is an optional parameter to force the removal of a directory or
fi le. In the following example, you delete the D:\Logs_Old directory (and all its
 contents):

remove-item d:\logs_old

As long as you have the appropriate permissions, you should be able to remove
directories and fi les. However, if fi les in a directory are in use, a fi le is in use, or a
directory is shared, you won’t be able to remove the directory or fi le. Additionally,
if a directory or fi le is marked Read-Only, Hidden, or System, you’ll have to use the
–Force parameter to remove it.

Working with File Contents

Often when you are working with computers, you’ll want to create your own
confi guration and inventory records or logs to record your activities. PowerShell
makes this easy by providing a simple set of commands for reading the contents
of fi les and writing new contents to fi les.

Commands for Managing File Contents

Commands that help you access fi le resources include the following:

 Get-Content Displays the contents of fi les in a specifi ed location. Use
–Force to force access to a hidden, system, or read-only fi le. Use –TotalCount
to specify the number of lines in each matching fi le to display. Use –Include
to limit the matches to fi les meeting specifi c criteria. Use –Exclude to omit
specifi ed fi les. Both –Include and –Exclude accept wildcard characters.

Get-Content [-LiteralPath | -Path] FilePath {AddtlParams}

AddtlParams=
[–Credential Credential] [-Delimiter String] [-Encoding Encoding]
[-Exclude FilesToExclude] [-Force] [-Include FilesToInclude]
[-TotalCount Count]

remove-item d:\logs_old

Get-Content [-LiteralPath | -Path] FilePath {AddtlParams}

AddtlParams=
[–Credential Credential] [-Delimiter String] [-Encoding Encoding]
[-Exclude FilesToExclude] [-Force] [-Include FilesToInclude]
[-TotalCount Count]

 Managing File Systems, Security, and Auditing CHAPTER 10 287

 REAL WORLD Many PowerShell cmdlets accept –Path and –LiteralPath parameters.

Both parameters specify the path to an item. However, unlike –Path, the value of

–LiteralPath is used exactly as it is typed. This means no characters are interpreted as

wildcards. If a path includes actual escape characters, enclose them in single quotation

marks because this tells PowerShell not to interpret any characters as escape sequences.

 Set-Content Overwrites the contents of fi les in a specifi ed location. Use
–Force to force access to a hidden, system, or read-only fi le. Specify the
content to write using the –Value parameter or by pipelining input from
another command. Use –Include to limit the matches to fi les meeting
specifi c criteria. Use –Exclude to omit specifi ed fi les. Both –Include and
–Exclude accept wildcard characters.

Set-Content [-LiteralPath | -Path] FilePath [-Value Content]
{AddtlParams}

AddtlParams=
[–Credential Credential] [-Encoding Encoding] [-Exclude
FilesToExclude] [-Force] [-Include FilesToInclude]

 Add-Content Adds contents to fi les in a specifi ed location. Use –Force to
force access to a hidden, system, or read-only fi le. Specify the content to
write using the –Value parameter or by pipelining input from another command.

Add-Content [-LiteralPath | -Path] FilePath [-Value NewContent]
{AddtlParams}

AddtlParams=
[–Credential Credential] [-Encoding Encoding] [-Exclude
FilesToExclude] [-Force] [-Include FilesToInclude]

 Clear-Content Clears the contents of fi les in a specifi ed location. Use
–Force to force access to a hidden, system, or read-only fi le. Use –Include to
limit the matches to fi les meeting specifi c criteria.

Add-Content [-LiteralPath | -Path] FilePath {AddtlParams}

AddtlParams=
[–Credential Credential] [-Exclude FilesToExclude] [-Force]
[-Include FilesToInclude]

Set-Content [-LiteralPath | -Path] FilePath [-Value Content]
{AddtlParams}

AddtlParams=
[–Credential Credential] [-Encoding Encoding] [-Exclude
FilesToExclude] [-Force] [-Include FilesToInclude]

Add-Content [-LiteralPath | -Path] FilePath [-Value NewContent]
{AddtlParams}

AddtlParams=
[–Credential Credential] [-Encoding Encoding] [-Exclude
FilesToExclude] [-Force] [-Include FilesToInclude]

Add-Content [-LiteralPath | -Path] FilePath {AddtlParams}

AddtlParams=
[–Credential Credential] [-Exclude FilesToExclude] [-Force]
[-Include FilesToInclude]

CHAPTER 10 Managing File Systems, Security, and Auditing 288

Reading and Writing File Content

By default, Get-Content searches the current directory for a fi le you specify by name
or by partial name using wildcards and then displays its contents as text. This means
you can quickly display the contents of any text-based fi le at the prompt simply by
typing Get-Content followed by the name of a fi le in the current directory. The
following example gets the log1.txt fi le in the current directory:

get-content log1.txt

 To display the contents of a fi le in a specifi ed path, type the full path to the fi le.
The following example gets the log1.txt fi le in the C:\Logs directory:

get-content c:\logs\log1.txt

 If you use wildcards, you can display the contents of any fi les that match the
wildcard criteria. The following example displays the contents of any fi le in the
C:\Logs directory that begins with “log”:

get-content c:\logs\log*

 To restrict wildcard matches to specifi c types of fi les, use the –Include parameter.
To exclude specifi c fi les or types of fi les, use the –Exclude parameter. For example, to
match only fi les with the .txt and .log extension, you can enter

get-content –include *.txt, *.log –path c:\logs\log*

 Alternatively, to exclude .xml fi les and match all other fi les beginning with “log”,
you can enter

get-content –exclude *.xml –path c:\logs\log*

 Additionally, if you want to see only the fi rst few lines of matching fi les, use
–TotalCount to specify the number of lines in each matching fi le to display. The
following example displays the fi rst 10 lines of each matching fi le:

get-content –totalcount 10 –path c:\logs\log*

 Other cmdlets for working with the contents of fi les include Set-Content, Add-
Content, and Clear-Content. Set-Content overwrites the contents of one or more
fi les in a specifi ed location with content you specify. Add-Content adds content
you specify to the end of one or more fi les in a specifi ed location. Clear-Content
removes the contents of fi les in a specifi ed location. Because Clear-Content does
not delete the fi les, this results in fi les with no contents (empty fi les).

get-content log1.txt

get-content c:\logs\log1.txt

get-content c:\logs\log*

get-content –include *.txt, *.log –path c:\logs\log*

get-content –exclude *.xml –path c:\logs\log*

get-content –totalcount 10 –path c:\logs\log*

 Managing File Systems, Security, and Auditing CHAPTER 10 289

Accessing Security Descriptors

 As an administrator, some of the most important tasks you perform have to do
with confi guring and maintaining fi le-system security. PowerShell makes this
easy by providing a simple set of commands for viewing and confi guring security
 descriptors. If you save a transcript of your work or use a script to perform the
work, you can easily duplicate your efforts on one computer on other computers
in the enterprise.

Commands for Working with Security Descriptors

 Commands that help you access fi le resources include the following:

 Get-Acl Gets objects that represent the security descriptor of a fi le, registry
key, or any other resource with a provider that supports the concept of security
descriptors. Use –Audit to get the audit data for the security descriptor from
the access control list.

Get-Acl [-Path] FilePaths {AddtlParams}

AddtlParams=
[-Audit] [-Exclude FilesToExclude] [-Include FilesToInclude]

 Set-Acl Changes the security descriptor of a fi le, registry key, or any other
resource with a provider that supports the concept of security descriptors.
Use –AclObject to set the desired security settings.

Set-Acl [-Path] FilePaths [-Aclobject] Security {AddtlParams}

AddtlParams=
[-Exclude FilesToExclude] [-Include FilesToInclude]

 NOTE On NTFS fi le system volumes, access permissions control access to fi les and

directories. If you do not have appropriate access permissions, you will not be able to

work with fi les and directories.

Getting and Setting Security Descriptors

 Whenever you are working with system resources—such as directories, fi les, or
registry keys—you might want to view or modify a resource’s security descriptor.
Use Get-Acl with the –Path parameter to specify the path to resources you want to
work with. As with Get-Content, you can use wildcard characters in the path and
also include or exclude fi les using the –Include and –Exclude parameters.

Get-Acl [-Path] FilePaths {AddtlParams}

AddtlParams=
[-Audit] [-Exclude FilesToExclude] [-Include FilesToInclude]

Set-Acl [-Path] FilePaths [-Aclobject] Security {AddtlParams}y

AddtlParams=
[-Exclude FilesToExclude] [-Include FilesToInclude]

CHAPTER 10 Managing File Systems, Security, and Auditing 290

Get-Acl returns a separate object containing the security information for each
matching fi le. By default, Get-Acl displays the path to the resource, the owner of the
resource, and a list of the access control entries on the resource. The access control
list is controlled by the resource owner. To get additional information—including
the security group of the owner, a list of auditing entries, and the full security
descriptor as an SDDL (Security Descriptor Defi nition Language) string—format the
output as a list as shown in the following example and sample output:

get-acl c:\windows\system32\windowspowershell | format-list

Path: Microsoft.PowerShell.Core\FileSystem::

C:\windows\system32\windowspowershell

Owner : NT AUTHORITY\SYSTEM

Group : NT AUTHORITY\SYSTEM

Access : NT SERVICE\TrustedInstaller Allow FullControl

 NT SERVICE\TrustedInstaller Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 BUILTIN\Users Allow ReadAndExecute, Synchronize

 BUILTIN\Users Allow -1610612736

 CREATOR OWNER Allow 268435456

Audit :

Sddl : O:SYG:SYD:AI(A;ID;FA;;;S-1-5-80-956008885-3418522649-1831038044-

1853292631-2271478464)(A;CIIOID;GA;;;S-1-5-80-956008885-3418522649-

1831038044-1853292631-2271478464)(A;ID;FA;;;SY) (A;OICIIOID;GA;;;SY)

(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)(A;ID;0x1200a9;;;BU)(A;OICIIOID;GXGR;;;

BU)(A;OICIIOID;GA;;;CO)

Here, Get-Acl returns a DirectorySecurity object representing the security
descriptor of the C:\Windows\System32\WindowsPowerShell directory. The result
is then sent to the Format-List cmdlet.

You can work with fi les in the same way. Here is an example:

get-acl –include *.txt, *.log –path c:\logs\log* | format-list

 Here, Get-Acl returns FileSecurity objects representing the security descriptors of
each matching fi le. The results are then sent to the Format-List cmdlet.

You can work with any properties of security objects separately, including:

 Owner Shows the owner of the resource

 Group Shows the primary group the owner is a member of

 Access Shows the access control rules on the resource

 Audit Shows the auditing rules on the resource

 Sddl Shows the full security descriptor as an SDDL string

get-acl c:\windows\system32\windowspowershell | format-list

Path: Microsoft.PowerShell.Core\FileSystem::

C:\windows\system32\windowspowershell

Owner : NT AUTHORITY\SYSTEM

Group : NT AUTHORITY\SYSTEM

Access : NT SERVICE\TrustedInstaller Allow FullControl

 NT SERVICE\TrustedInstaller Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 BUILTIN\Users Allow ReadAndExecute, Synchronize

 BUILTIN\Users Allow -1610612736

 CREATOR OWNER Allow 268435456

Audit :

Sddl : O:SYG:SYD:AI(A;ID;FA;;;S-1-5-80-956008885-3418522649-1831038044-

1853292631-2271478464)(A;CIIOID;GA;;;S-1-5-80-956008885-3418522649-

1831038044-1853292631-2271478464)(A;ID;FA;;;SY) (A;OICIIOID;GA;;;SY)

(A;ID;FA;;;BA)(A;OICIIOID;GA;;;BA)(A;ID;0x1200a9;;;BU)(A;OICIIOID;GXGR;;;

BU)(A;OICIIOID;GA;;;CO)

get-acl –include *.txt, *.log –path c:\logs\log* | format-list

 Managing File Systems, Security, and Auditing CHAPTER 10 291

 NOTE FileSecurity and DirectorySecurity objects have additional properties that

aren’t displayed as part of the standard output. To see these properties, send the out-

put to Format-List *. You’ll then see the following note and script properties: PSPath

(the PowerShell path to the resource), PSParentPath (the PowerShell path to the

 parent resource), PSChildName (the name of the resource), PSDrive (the PowerShell

drive on which the resource is located), AccessToString (an alternate representation of

the access rules on the resource), and AuditToString (an alternate representation of the

audit rules on the resource).

 You can use the objects that Get-Acl returns to set the security descriptors on
other system resources, including directories, fi les, and registry keys. To do this,
you’ll want to do the following:

 1. Open an elevated administrator PowerShell prompt.

 2. Obtain a single security descriptor object for a resource that has the security
settings you want to use.

 3. Use the security descriptor object to establish the desired security settings
for another resource.

 When you are setting security descriptors in PowerShell, it is a best practice
either to specify exactly what you are including, what you are excluding, or both, or
to specify only a single resource to modify. Previously, we were working with a log
fi le named log1.txt in the C:\Logs directory. If this log fi le has a security descriptor
that you want to apply to another fi le, you can do this as shown in the following
example:

set-acl –path c:\logs\log2.txt -aclobject (get-acl c:\logs\log1.txt)

 Here you use the security descriptor on log1.txt to set the security descriptor for
log2.txt.

 You can easily extend this technique. In this example, you use the security
descriptor on log1.txt to set the security descriptor for all other .txt and .log fi les
in the C:\Logs directory:

$secd = get-acl c:\logs\log1.txt
set-acl –include *.txt, *.log –path c:\logs* -aclobject $secd

 To include fi les in subdirectories, you need to use Get-ChildItem to obtain
reference objects for all the fi les you want to work with. Here is an example:

$s = get-acl c:\logs\log1.txt
gci c:\logs -recurse –include *.txt, *.log -force | set-acl -aclobject $s

 Here, gci is an alias for Get-ChildItem. You obtain the security descriptor for
log1.txt. Next you get a reference to all .txt and .log fi les in the C:\Logs directory
and all subdirectories. Finally, you use the security descriptor on log1.txt to set the
security descriptor for all these fi les.

set-acl –path c:\logs\log2.txt -aclobject (get-acl c:\logs\log1.txt)

$secd = get-acl c:\logs\log1.txt
set-acl –include *.txt, *.log –path c:\logs* -aclobject $secd

$s = get-acl c:\logs\log1.txt
gci c:\logs -recurse –include *.txt, *.log -force | set-acl -aclobject $s

CHAPTER 10 Managing File Systems, Security, and Auditing 292

If you want to work with directories rather than fi les, you need to limit the results
returned by Get-ChildItem. For fi les and directories, each resource object returned
by Get-ChildItem includes a Mode property as shown in the following example and
sample output:

get-childitem c:\

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 6/20/2008 1:20 PM Backup

d---- 2/19/2008 10:57 AM cabs

d---- 12/18/2008 9:16 AM Documents

-a--- 9/18/2006 2:43 PM 24 autoexec.bat

-ar-s 2/29/2008 9:53 AM 8192 BOOTSECT.BAK

-a--- 9/18/2006 2:43 PM 10 config.sys

The valid values for modes are the following:

 d (directory)

 a (archive)

 r (read-only)

 h (hidden)

 s (system)

Therefore, if you want to work only with directories, you can look for resources
where the mode contains a d or is like d*, for example,

where-object {$_.mode -like "d*"}

In addition, if you want to work only with fi les, you can use

where-object {$_.mode -notlike "d*"}

 Knowing this, you can copy the security descriptor on C:\Data to C:\Logs and all
its subdirectories as shown in this example:

gci c:\logs -recurse -force | where-object {$_.mode -like "d*"} |
set-acl -aclobject (get-acl c:\data)

 Alternatively, you can copy the security descriptor on C:\Data\key.txt to all fi les in
C:\Logs and all its subdirectories, as shown here:

gci c:\logs -recurse -force | where-object {$_.mode -notlike "d*"} |
set-acl -aclobject (get-acl c:\data\key.txt)

get-childitem c:\

 Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 6/20/2008 1:20 PM Backup

d---- 2/19/2008 10:57 AM cabs

d---- 12/18/2008 9:16 AM Documents

-a--- 9/18/2006 2:43 PM 24 autoexec.bat

-ar-s 2/29/2008 9:53 AM 8192 BOOTSECT.BAK

-a--- 9/18/2006 2:43 PM 10 config.sys

where-object {$_.mode -like "d*"}

where-object {$_.mode -notlike "d*"}

gci c:\logs -recurse -force | where-object {$_.mode -like "d*"} |
set-acl -aclobject (get-acl c:\data)

gci c:\logs -recurse -force | where-object {$_.mode -notlike "d*"} |
set-acl -aclobject (get-acl c:\data\key.txt)

 Managing File Systems, Security, and Auditing CHAPTER 10 293

 NOTE For these examples to work, the directories and fi les must exist. If you want to

try these examples on your computer, create the C:\Data and C:\Logs directories and

then add several .txt fi les to these directories, including a fi le called key.txt.

Working with Access Rules

 As you can see, it is fairly easy and straightforward to copy security descriptors
from one resource to another—and more importantly, the same techniques apply
to any type of resource that has security descriptors, whether you are working with
fi les, directories, registry keys, or whatever. If you want to create your own security
descriptors, we’ll have to dig deeper into the security object model. In this model,
access control rules, such as security descriptors, are represented as objects. The
Access property of security objects is defi ned as a collection of authorization rules.
With directories and fi les, these rules have the following object type:

 System.Security.AccessControl.FileSystemAccessRule

 You can view the individual access control objects that apply to a resource in
several ways. One way is to get a security descriptor object and then list the contents
of its Access property as shown in the following example and sample output:

$s = get-acl c:\logs
$s.access

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize

AccessControlType : Allow

IdentityReference : BUILTIN\Users

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

FileSystemRights : Modify, Synchronize

AccessControlType : Allow

IdentityReference : NT AUTHORITY\Authenticated Users

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

$s = get-acl c:\logs
$s.access

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize

AccessControlType : Allow

IdentityReference : BUILTIN\Users

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

FileSystemRights : Modify, Synchronize

AccessControlType : Allow

IdentityReference : NT AUTHORITY\Authenticated Users

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

CHAPTER 10 Managing File Systems, Security, and Auditing 294

Here you get the DirectorySecurity object for the C:\Logs directory and then
display the contents of its Access property. Although each value listed is an access
rule object, you cannot work with each access rule object separately. Note the
following in the output:

 FileSystemRights Shows the fi le system rights being applied

 AccessControlType Shows the access control type as Allow or Deny

 IdentityResource Shows the user or group to which the rule applies

 IsInherited Specifi es whether the access rule is inherited

 InheritanceFlags Shows the way inheritance is being applied

 PropagationFlags Specifi es whether the access rule will be inherited

 Another way to work with each access rule object separately is to use a ForEach
loop as shown in this example:

$s = get-acl c:\logs

foreach($a in $s.access) {

 #work with each access control object

 if ($a.identityreference -like "*administrator*") {$a | format-list *}
}

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

 Here, you examine each access rule object separately, which allows you to take
action on specifi c access rules. In this example, you look for access rules that apply
to administrators.

 As an administrator, you’ll often want to perform similar searches to fi nd
fi les and folders that aren’t confi gured to allow access that might be required to
perform backups or other administrative tasks. Previously, we discussed using
 Get-ChildItem to work with directories and fi les. For directories and fi les, each
resource object returned by Get-ChildItem includes a Mode property that you can
use to work with either directories or fi les. In the following example and sample

$s = get-acl c:\logs

foreach($a in $s.access) {

 #work with each access control object

 if ($a.identityreference -like "*administrator*") {$a | format-list *}
}

FileSystemRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : None

PropagationFlags : None

 Managing File Systems, Security, and Auditing CHAPTER 10 295

output, you list every directory and fi le on drive C that doesn’t allow administra-
tors full control:

$resc = gci c:\ -recurse -force | where-object {$_.mode -notlike "*hs*"}

foreach($r in $resc) {
 $s = get-acl $r.FullName
 $found = $false

 foreach($a in $s.access) {
 if (($a.identityreference -like "*administrator*") –and `
 ($a.filesystemrights –eq "fullcontrol")) {
 if ($a.accesscontroltype -eq "allow") { $found = $true }
 }
 }

 if (-not $found) { write-host $r.FullName}
}

C:\logs\backup

C:\logs\backup2

C:\logs\logs

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup\b2

 Here, you should run the code using an elevated administrator PowerShell
prompt. The $resc variable stores a collection of objects that includes all fi les and
directories on C:\, except for fi les and directories marked as Hidden or System. Using
a ForEach loop, you then examine each related resource object. First, you get the
access control list for the object by referencing the full name of the object. Then
you initialize the $found variable to False so that you can use this variable to track
whether a fi le has the access rights you are looking for.

 In the second ForEach loop, you examine each access control object associated
with a particular fi le or folder. If a resource allows administrators full control, you
set $found to True. Because you are checking the status of three properties, you
use a logical AND to check two properties fi rst. If those properties are both set as
expected, you check the third property to see if it is True also. Finally, if $found
is not True (meaning it’s False), you write the full name of the fi le or folder to the
output. The result is a list of all fi les and folders that are not confi gured so that all
administrators have full control.

$resc = gci c:\ -recurse -force | where-object {$_.mode -notlike "*hs*"}

foreach($r in $resc) {
 $s = get-acl $r.FullName
 $found = $false

 foreach($a in $s.access) {
 if (($a.identityreference -like "*administrator*") –and `
 ($a.filesystemrights –eq "fullcontrol")) {
 if ($a.accesscontroltype -eq "allow") { $found = $true }
 }
 }

 if (-not $found) { write-host $r.FullName}
}

C:\logs\backup

C:\logs\backup2

C:\logs\logs

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup\b2

 CHAPTER 10 Managing File Systems, Security, and Auditing 296

Configuring File and Directory Permissions

On NTFS volumes, you can assign two types of access permissions to files and
directories: Basic and Special. These permissions grant or deny access to users and
groups.

Setting Basic Permissions

The basic permissions you can assign to directories and files are shown in Table 10-1
and Table 10-2. These permissions are made up of multiple special permissions.
Note the rule flag for each permission because this is the value you must reference
when creating an access rule.

TABLE 10-1 Basic Folder Permissions

PERMISSION DESCRIPTION RULE FLAG

Full Control This permission permits reading, writing, chang-
ing, and deleting files and subdirectories. If a user
has Full Control over a folder, she can delete files
in the folder regardless of the permission on the
files.

FullControl

Modify This permission permits reading and writing to
files and subdirectories, and it allows deletion of
the folder.

Modify

List Folder
Contents

This permission permits viewing and listing files
and subdirectories as well as executing files; it’s
inherited by directories only.

Synchronize

Read &
Execute

This permission permits viewing and listing files
and subdirectories as well as executing files; it’s
inherited by files and directories.

ReadAnd-
Execute

Write This permission permits adding files and subdi-
rectories.

Write

Read This permission permits viewing and listing files
and subdirectories.

Read

 Managing File Systems, Security, and Auditing CHAPTER 10 297

TABLE 10-2 Basic File Permissions

PERMISSION DESCRIPTION RULE FLAG

Full Control This permission permits reading, writing, changing,
and deleting the file.

FullControl

Modify This permission permits reading and writing of the
file; it allows deletion of the file.

Modify

Read &
Execute

This permission permits viewing and accessing the
file’s contents as well as executing the file.

ReadAnd-
Execute

Write This permission permits writing to a file. Giving a
user permission to write to a file but not to delete
it doesn’t prevent the user from deleting the file’s
contents.

Write

Read This permission permits viewing or accessing the
file’s contents. Read is the only permission needed
to run scripts. Read access is required to access a
shortcut and its target.

Read

When you are configuring basic permissions for users and groups, you can
specify the access control type as either Allowed or Denied. If a user or group
should be granted an access permission, you allow the permission. If a user
or group should be denied an access permission, you deny the permission.

You configure basic permissions for resources using access rules. Access rules
contain collections of arrays that define

 The user or group to which the rule applies.

 The access permission that applies.

 The allow or deny status.

This means regardless of whether you are adding or modifying rules, the basic
syntax for an individual access rule is

"UserOrGroupName", "ApplicablePermission", "ControlType"

where UserOrGroupName is the name of the user or group to which the access rule
applies, ApplicablePermission is the basic permission you are applying, and Control-
Type specifies the allow or deny status. User and group names are specified in
COMPUTER\Name or DOMAIN\Name format. In the following example, you grant
full control to BackupOpUser:

"BackupOpUser", "FullControl", "Allow"

When you are working with folders, you can use the basic syntax to configure
permissions for folders. You also can use an expanded syntax to configure permis-
sions for a folder and its contents. The expanded syntax for an access rule is

 CHAPTER 10 Managing File Systems, Security, and Auditing 298

"UserOrGroupName", "ApplicablePermission", "InheritanceFlag",
"PropagationFlag","ControlType”

where UserOrGroupName is the name of the user or group to which the access rule
applies, ApplicablePermission is the basic permission you are applying, Inheritance-
Flag controls inheritance, PropagationFlag controls propagation of inherited rules,
and ControlType specifies the type of access control. In the following example, you
grant full control to DeploymentTesters and apply inheritance to the folder and all
its subfolders:

"BackupOpUser", "FullControl", "ContainerInherit", "None", "Allow"

With the inheritance flag, you can specify one of the following flag values:

 None The access rule is not inherited by child objects.

 ContainerInherit The access rule is inherited by subfolders (child container
objects).

 ObjectInherit The access rule is inherited by files (child objects).

 ContainerInherit, ObjectInherit The access rule is inherited by files and
subfolders (child objects and child container objects).

With the propagation flag, you can specify the following flag values:

 None The access rule is propagated without modification.

 InheritOnly The access rule is propogated to immediate child and child
container objects.

 NoPropagateInherit The access rule applies to child objects and to child
container objects but not to child objects of child container objects.

 NoPropagateInherit, InheritOnly The access rule applies to child container
objects.

You add access rules to a resource using either the SetAccessRule() method or
the AddAccessRule() method of the access control object. You remove access rules
from a resource using the RemoveAccessRule() method of the access control object.
As discussed previously, access rules are defined as having the System.Security.Access-
Control.FileSystemAccessRule type.

The easiest way to add and remove access rules is to

 1. Get an access control object. This object can be the one that applies to the
resource you want to work with or one that applies to a resource that has the
closest access control permissions to those you want to use.

 2. Create one or more instances of the System.Security.AccessControl.File-
SystemAccessRule type, and store the desired permissions in these object
instances.

 3. Call AddAccessRule() or RemoveAccessRule() to add or remove access
rules as necessary. These methods operate on the access control object
you retrieved in the first step.

 Managing File Systems, Security, and Auditing CHAPTER 10 299

 4. To apply the changes you’ve made to an actual resource, you must apply the
access control object to a specifi ed resource.

 Consider the following example:

$acl = get-acl c:\logs
$perm = "cpandl\dev","fullcontrol","allow"
$r = new-object system.security.accesscontrol.filesystemaccessrule $perm
$acl.addaccessrule($r)
$acl | set-acl c:\logs

 Here, you get the access control object on C:\Logs. You store the values for an
access rule in a variable called $perm and then create a new instance of the FileSystem-
AccessRule type for this access rule. The Dev group in the Cpandl domain must
exist to create the access rule. To add the permission to the access control object
you retrieved previously, you call its AddAccessRule() method. Although you could
have created additional permissions and added or removed these, you didn’t in this
example. Finally, you applied the access control object to a specifi c resource using
Set-Acl.

 You can easily extend the previous examples to apply to multiple directories and
fi les as shown in the following example:

$acl = get-acl c:\logs
$perm = "room5\test","fullcontrol","allow"
$r = new-object system.security.accesscontrol.filesystemaccessrule $perm
$acl.addaccessrule($r)

$resc = gci c:\logs -recurse -force
foreach($f in $resc) {

 write-host $f.fullname
 $acl | set-acl $f.FullName
}

C:\logs\backup

C:\logs\backup2

C:\logs\logs

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup\b2

 Here, you apply an access control list with a modifi ed permission set to every
subdirectory of C:\Logs and every fi le in C:\Logs and its subdirectories. The Test

$acl = get-acl c:\logs
$perm = "cpandl\dev","fullcontrol","allow"
$r = new-object system.security.accesscontrol.filesystemaccessrule $perm
$acl.addaccessrule($r)
$acl | set-acl c:\logs

$acl = get-acl c:\logs
$perm = "room5\test","fullcontrol","allow"
$r = new-object system.security.accesscontrol.filesystemaccessrule $perm
$acl.addaccessrule($r)

$resc = gci c:\logs -recurse -force
foreach($f in $resc) {

 write-host $f.fullname
 $acl | set-acl $f.FullName
}

C:\logs\backup

C:\logs\backup2

C:\logs\logs

C:\logs\data.ps1

C:\logs\log1.txt

C:\logs\log2.txt

C:\logs\log3.txt

C:\logs\log4.txt

C:\logs\backup\backup

C:\logs\backup\backup\b2

 CHAPTER 10 Managing File Systems, Security, and Auditing 300

group on the local computer (named Room5) must exist to create the access rule. In
the output, you list the names of the directories and files you’ve modified. This helps
you keep track of the changes.

Setting Special Permissions

The special permissions you can assign to directories and files are shown in Table 10-3.
Because special permissions are combined to make the basic permissions, they are
also referred to as atomic permissions. As with basic permissions, note the rule flag
for each permission because this is the value you must reference when creating an
access rule. When an item has two rule flags, you need to reference only one or
the other to set the related special permission.

TABLE 10-3 Special Permissions

PERMISSION DESCRIPTION RULE FLAG

Traverse Folder/
Execute File

Traverse Folder lets you directly
access a folder even if you don’t
have explicit access to read the
data it contains. Execute File lets
you run an executable file.

Traverse, ExecuteFile

List Folder/Read
Data

List Folder lets you view file and
folder names. Read Data lets
you view the contents of a file.

ListDirectory, ReadData

Read Attributes Lets you read the basic attri-
butes of a file or folder. These
attributes include Read-Only,
Hidden, System, and Archive.

ReadAttributes

Read Extended
Attributes

Lets you view the extended
attributes (named data streams)
associated with a file. These
include Summary fields, such
as Title, Subject, and Author, as
well as other types of data.

ReadExtendedAttributes

Create Files/Write
Data

Create Files lets you put new
files in a folder. Write Data
 allows you to overwrite existing
data in a file (but not add new
data to an existing file because
this is covered by Append Data).

CreateFiles, WriteData

 Managing File Systems, Security, and Auditing CHAPTER 10 301

TABLE 10-3 Special Permissions

PERMISSION DESCRIPTION RULE FLAG

Create Folders/
Append Data

Create Folders lets you create
subfolders within folders.
Append Data allows you to add
data to the end of an existing
file (but not to overwrite existing
data because this is covered by
Write Data).

CreateFolders, AppendData

Write Attributes Lets you change the basic
 attributes of a file or folder. These
attributes include Read-Only,
Hidden, System, and Archive.

WriteAttributes

Write Extended
Attributes

Lets you change the extended
attributes (named data streams)
associated with a file. These
include Summary fields, such
as Title, Subject, and Author, as
well as other types of data.

WriteExtendedAttributes

Delete Subfolders
and Files

Lets you delete the contents
of a folder. If you have this
permission, you can delete the
subfolders and files in a folder
even if you don’t specifically
have Delete permission on the
subfolder or file.

DeleteSubdirectoriesAnd-
Files

Delete Lets you delete a file or folder.
If a folder isn’t empty and you
don’t have Delete permission
for one of its files or subfolders,
you won’t be able to delete it.
You can do this only if you have
the Delete Subfolders and Files
permission.

Delete

Read Permissions Lets you read all basic and
special permissions assigned to
a file or folder.

ReadPermissions

Change
 Permissions

Lets you change basic and
special permissions assigned to
a file or folder.

ChangePermissions

 CHAPTER 10 Managing File Systems, Security, and Auditing 302

TABLE 10-3 Special Permissions

PERMISSION DESCRIPTION RULE FLAG

Take Ownership Lets you take ownership of a file
or folder. By default, administra-
tors can always take ownership
of a file or folder and can also
grant this permission to others.

TakeOwnership

Tables 10-4 and 10-5 show how special permissions are combined to make the
basic permissions for files and folders.

TABLE 10-4 Special Permissions for Folders

SPECIAL PERMISSIONS

FULL

CONTROL MODIFY

READ &

EXECUTE

LIST FOLDER

CONTENTS READ WRITE

Traverse Folder/
Execute File

X X X X

List Folder/Read
Data

X X X X X

Read Attributes X X X X X

Read Extended
 Attributes

X X X X X

Create Files/Write
Data

X X X

Create Folders/
Append Data

X X X

Write Attributes X X X

Write Extended
 Attributes

X X X

Delete Subfolders
and Files

X

Delete X X

Read Permissions X X X X X X

Change Permissions X

Take Ownership X

 Managing File Systems, Security, and Auditing CHAPTER 10 303

 TABLE 10-5 Special Permissions for Files

 SPECIAL PERMISSIONS

FULL

 CONTROL MODIFY

READ &

EXECUTE READ WRITE

 Traverse Folder/Execute File X X X

 List Folder/Read Data X X X X

 Read Attributes X X X X

 Read Extended Attributes X X X X

 Create Files/Write Data X X X

 Create Folders/Append Data X X X

 Write Attributes X X X

 Write Extended Attributes X X X

 Delete Subfolders and Files X

 Delete X X

 Read Permissions X X X X X

 Change Permissions X

 Take Ownership X

 You confi gure special permissions for directories and fi les in the same way as ba-
sic permissions. You add access rules to a resource using either the SetAccessRule()
method or the AddAccessRule() method of the access control object. You remove
access rules from a resource using the RemoveAccessRule() method of the access
control object.

 Consider the following example:

$acl = get-acl c:\logs
$p1 = "cpandl\dev","executefile","allow"
$r1 = new-object system.security.accesscontrol.filesystemaccessrule $p1
$acl.addaccessrule($r1)

$p2 = "cpandl\dev","listdirectory","allow"
$r2 = new-object system.security.accesscontrol.filesystemaccessrule $p2
$acl.addaccessrule($r2)

$acl | set-acl c:\logs

 Here, you get the access control object on C:\Logs. After you defi ne an access
rule and store the related values in $p1, you create a new instance of the FileSystem-
AccessRule type and add the permission to the access control object by calling the

$acl = get-acl c:\logs
$p1 = "cpandl\dev","executefile","allow"
$r1 = new-object system.security.accesscontrol.filesystemaccessrule $p1
$acl.addaccessrule($r1)

$p2 = "cpandl\dev","listdirectory","allow"
$r2 = new-object system.security.accesscontrol.filesystemaccessrule $p2
$acl.addaccessrule($r2)

$acl | set-acl c:\logs

CHAPTER 10 Managing File Systems, Security, and Auditing 304

AddAccessRule() method. After you defi ne a second access rule and store the related
values in $p2, you create a new instance of the FileSystemAccessRule type and add
the permission to the access control object by calling the AddAccessRule() method.
Finally, you apply the access control object to a specifi c resource using Set-Acl. The
Dev group in the Cpandl domain must exist to create the access rules.

Taking Ownership

In Windows, the fi le or directory owner isn’t necessarily the fi le or directory’s creator.
Instead, the fi le or directory owner is the person who has direct control over the fi le
or directory. File or directory owners can grant access permissions and give other
users permission to take ownership of a fi le or directory.

 The way ownership is assigned initially depends on where the fi le or directory is
being created. By default, the user who created the fi le or directory is listed as the
current owner. Ownership can be taken or transferred in several ways. Any admin-
istrator can take ownership. Any user or group with the Take Ownership permis-
sion can take ownership. Any user who has the Restore Files And Directories right,
such as a member of the Backup Operators group, can take ownership as well. Any
current owner can transfer ownership to another user as well.

 You can take ownership using a fi le or directory using the SetOwner() method of
the access control object. The easiest way to take ownership is to

 1. Get an access control object for the resource you want to work with.

 2. Get the IdentityReference for the user or group that will take ownership. This
user or group must already have permission on the resource (as discussed
previously).

 3. Call SetOwner to specify that you want the user or group to be the owner.

 4. Apply the changes you’ve made to the resource.

 Consider the following example:

$acl = get-acl c:\logs
$found = $false
foreach($rule in $acl.access) {
 if ($rule.identityreference -like "*administrators*") {
 $global:ref = $rule.identityreference; $found = $true; break}
}

if ($found) {
 $acl.setowner($ref)
 $acl | set-acl c:\logs
}

 Here, you get the access control object on C:\Logs. You then examine each access
rule on this object, looking for the one that applies to the group you want to work
with. If you fi nd a match, you set $ref to the IdentityReference for this group, change

$acl = get-acl c:\logs
$found = $false
foreach($rule in $acl.access) {
 if ($rule.identityreference -like "*administrators*") {
 $global:ref = $rule.identityreference; $found = $true; break}
}

if ($found) {
 $acl.setowner($ref)
 $acl | set-acl c:\logs
}

 Managing File Systems, Security, and Auditing CHAPTER 10 305

$found to $true, and then break out of the ForEach loop. After you break out of the
loop, you check to see if $found is True. If it is, you set the ownership permission on
the access control object you retrieved previously and then apply the access control
object to C:\Logs using Set-Acl.

Configuring File and Directory Auditing

You can use auditing to track what’s happening on your computers. Auditing collects
information related to resource usage, such as a file or directory audit. Any time
an action occurs that you’ve configured for auditing, the action is written to the
system’s security log, where it’s stored for your review. The security log is accessible
from Event Viewer. For most auditing changes, you need to be logged on using an
account that’s a member of the Administrators group, or you need to be granted the
Manage Auditing And Security Log right in Group Policy.

Auditing policies are essential to ensure the security and integrity of your systems.
Just about every computer system on the network should be configured with some type
of auditing. You can set auditing policies for directories and files using auditing rules.

Audit rules contain collections of arrays that define

 The user or group to which the rule applies.

 The permission usage that is audited.

 The type of auditing.

This means regardless of whether you are adding or modifying rules, the basic
syntax for an individual audit rule is

"UserOrGroupName", "PermissionAudited", "AuditType"

where UserOrGroupName is the name of the user or group to which the audit rule
applies, PermissionAudited is the basic or special permission you are tracking, and
AuditType specifies the type of auditing. Use Success to track successful use of a
specified permission. Use Failure to track failed use of a specified permission. Use
None to turn off auditing of the specified permission. Use Both to track both failure
and success.

As with security permissions, user and group names are specified in COMPUTER\
Name or DOMAIN\Name format. In the following example, you track users in the
Cpandl domain who are trying to access the resource but fail to do so because they
don’t have sufficient access permissions:

"CPANDL\USERS", "ReadData", "Failure"

When you are working with folders, you can use the basic syntax to configure
auditing for folders. You also can use an expanded syntax to configure auditing for
a folder and its contents. The expanded syntax for an access rule is

"UserOrGroupName", "PermissionAudited", "InheritanceFlag",
"PropagationFlag","AuditType"

 CHAPTER 10 Managing File Systems, Security, and Auditing 306

where UserOrGroupName is the name of the user or group to which the access rule
applies, PermissionAudited is the basic or special permission you are tracking, Inher-
itanceFlag controls inheritance, PropagationFlag controls propagation of inherited
rules, and AuditType specifies the type of auditing. In the following example, you
apply an auditing rule to a resource as well as the files and subfolders it contains:

"CPANDL\USERS", "ReadData", "ContainerInherit", "None", "Failure"

With the inheritance flag, you can specify one of the following flag values:

 None The access rule is not inherited by child objects.

 ContainerInherit The access rule is inherited by subfolders (child container
objects).

 ObjectInherit The access rule is inherited by files (child objects).

 ContainerInherit, ObjectInherit The access rule is inherited by files and
subfolders (child objects and child container objects).

With the propagation flag, you can specify the following flag values:

 None The access rule is propagated without modification.

 InheritOnly The access rule is propogated to immediate child and child
container objects.

 NoPropagateInherit The access rule applies to child objects and to child
container objects but not to child objects of child container objects.

 NoPropagateInherit, InheritOnly The access rule applies to child container
objects.

You add audit rules to a resource using either the SetAuditRule() method or the
AddAuditRule() method of the access control object. You remove audit rules from
a resource using the RemoveAuditRule() method of the access control object. Audit
rules are defined as having the System.Security.AuditControl.FileSystemAuditRule
type.

The easiest way to add and remove audit rules is to do the following:

 1. Get an access control object. This object can be the one that applies to the
resource you want to work with or one that applies to a resource that has the
closest audit control permissions to those you want to use.

 2. Create one or more instances of the System.Security.AuditControl.FileSystem-
AuditRule type, and store the desired auditing settings in these object
instances.

 3. Call AddAuditRule() or RemoveAuditRule() to add or remove audit rules as
necessary. These methods operate on the access control object you retrieved
in the first step.

 4. Apply the changes you’ve made to an actual resource.

 Managing File Systems, Security, and Auditing CHAPTER 10 307

 Consider the following example:

$acl = get-acl d:\data
$audit = "cpandl\users","readdata","failure"
$r = new-object system.security.accesscontrol.filesystemauditrule $audit
$acl.addauditrule($r)
$acl | set-acl d:\data

 Here, you get the access control object on D:\Data. You store the values for
an audit rule in a variable called $audit, and then you create a new instance of the
FileSystem AuditRule type with this auditing rule. The Users group in the Cpandl domain
must exist to create the auditing rule. To add the auditing setting to the access control
object you retrieved previously, you call its AddAuditRule() method. Although you
could have created additional auditing rules and added or removed these, you didn’t
in this example. Finally, you apply the access control object to a specifi c resource
using Set-Acl.

 You can easily extend the previous examples to apply to multiple directories and
fi les as shown in the following example:

$acl = get-acl d:\data
$audit = "cpandl\users","readdata","failure"
$r = new-object system.security.accesscontrol.filesystemauditrule $audit
$acl.addauditrule($r)

$resc = gci d:\data -recurse -force
foreach($f in $resc) {

 write-host $f.fullname
 $acl | set-acl $f.FullName
}

D:\data\backup

D:\data\backup\historydat.txt

D:\data\logs\datlog.log

D:\data\data.ps1

D:\data\transcript1.txt

D:\data\transcript2.txt

D:\data\backup\backup

 Here, you apply an auditing rule to every subdirectory of D:\Data and every fi le
in D:\Data and its subdirectories. In the output, you list the names of the directories
and fi les you’ve modifi ed. This helps you keep track of the changes. The Users group
in the Cpandl domain must exist to create the auditing rule.

$acl = get-acl d:\data
$audit = "cpandl\users","readdata","failure"
$r = new-object system.security.accesscontrol.filesystemauditrule $audit
$acl.addauditrule($r)
$acl | set-acl d:\data

$acl = get-acl d:\data
$audit = "cpandl\users","readdata","failure"
$r = new-object system.security.accesscontrol.filesystemauditrule $audit
$acl.addauditrule($r)

$resc = gci d:\data -recurse -force
foreach($f in $resc) {

 write-host $f.fullname
 $acl | set-acl $f.FullName
}

D:\data\backup

D:\data\backup\historydat.txt

D:\data\logs\datlog.log

D:\data\data.ps1

D:\data\transcript1.txt

D:\data\transcript2.txt

D:\data\backup\backup

309

CHAP TER 11

Managing Shares, Printers,
and TCP/IP Networking

Managing Network Shares 309

Managing Printers 314

Managing TCP/IP Networking 319

Configuring Windows Firewall 328

As an administrator, you enable networked computers to communicate and
share resources using the basic networking features built into Windows.

You use TCP/IP to enable network communications. You use network shares and
 printers to share resources across the enterprise.

Managing Network Shares

When you share a directory or a drive, you make all its files and subdirectories
available to a specified set of users. You can enable network shares only on disks
formatted with NTFS. When you do, two sets of permissions determine who has
access to shared files: NTFS permissions and share permissions. Together, these
permissions let you control who has access to shared files and the level of access
assigned. You do not need to move the files you are sharing.

With network shares, share permissions are used only when a user attempts
to access a file or directory from a different computer on the network, whereas
 access permissions are always used, whether the user is logged on to the console
or using a remote system to access the file or directory over the network. When
data is accessed remotely, first the share permissions are applied, and then
the access permissions are applied. When data is accessed locally, only access
 permissions apply.

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking310

TIP A computer’s sharing confi guration determines whether directories and drives

can be shared. You can access Network And Sharing Center to confi gure these settings

by clicking Start and then clicking Network. On the Explorer toolbar, click Network

And Sharing Center.

Getting Information About Shares

Shared resources are managed differently from drives or other types of fi le system
resources. To work with shares in Windows PowerShell, you use the Win32_Share
class. By typing Get-Wmiobject -Class Win32_Share, you can view the shares that
are available as shown in this example and sample output:

get-wmiobject -class win32_share

Name Path Description

---- ---- -----------

ADMIN$ C:\Windows Remote Admin

C$ C:\ Default share

D$ D:\ Default share

E$ E:\ Default share

HP3505-PCL6 HP CLJ CP3505 PCL6,LocalsplOnly HP CLJ CP3505

IPC$ Remote IPC

print$ C:\Windows\system32\spool\drivers Printer Driver

W$ W:\ Default share

 Shares have a number of properties that you can view and manage. To view the
properties of a particular share, limit the results using a Windows Management
Instrumentation (WMI) query or a Where-Object match expression. In the following
example and sample output, you examine the properties of the C$ share:

get-wmiobject -class win32_share | where-object {$_.Name -eq "C$"} |
format-list *

Status : OK

Type : 2147483648

Name : C$

__GENUS : 2

__CLASS : Win32_Share

__SUPERCLASS : CIM_LogicalElement

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Share.Name=”C$”

__PROPERTY_COUNT : 10

__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC89

__NAMESPACE : root\cimv2

__PATH : \\TECHPC89\root\cimv2:Win32_Share.Name=”C$”

AccessMask :

get-wmiobject -class win32_share

Name Path Description

---- ---- -----------

ADMIN$ C:\Windows Remote Admin

C$ C:\ Default share

D$ D:\ Default share

E$ E:\ Default share

HP3505-PCL6 HP CLJ CP3505 PCL6,LocalsplOnly HP CLJ CP3505

IPC$ Remote IPC

print$ C:\Windows\system32\spool\drivers Printer Driver

W$ W:\ Default share

get-wmiobject -class win32_share | where-object {$_.Name -eq "C$"} |
format-list *

Status : OK

Type : 2147483648

Name : C$

__GENUS : 2

__CLASS : Win32_Share

__SUPERCLASS : CIM_LogicalElement

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Share.Name=”C$”

__PROPERTY_COUNT : 10

__DERIVATION : {CIM_LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC89

__NAMESPACE : root\cimv2

__PATH : \\TECHPC89\root\cimv2:Win32_Share.Name=”C$”

AccessMask :

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 311

AllowMaximum : True

Caption : Default share

Description : Default share

InstallDate :

MaximumAllowed :

Path : C:\

Scope : System.Management.ManagementScope

Options : System.Management.ObjectGetOptions

ClassPath : \\TECHPC89\root\cimv2:Win32_Share

Properties : {AccessMask, AllowMaximum, Caption, Description...}

SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}

Qualifiers : {dynamic, Locale, provider, UUID}

Site :

Container :

 NOTE To query multiple computers, use the –ComputerName parameter of the

 Get-Wmiobject cmdlet. Here is an example:

get-wmiobject -class win32_share -computername Server43,
Server27, Server82

 The Type property specifi es the type of share. Values you’ll see include the
 following:

 0 Disk Share

 1 Print Share

 2 Device Share

 3 IPC Share

 2147483648 Administrative Disk Share

 2147483649 Administrative Print Share

 2147483650 Administrative Device Share

 2147483651 Administrative IPC Share

Changing Share Settings

 At an elevated administrator PowerShell prompt, you can modify several settings on
a share, including the maximum number of allowed users and the description. The
MaxAllow property controls the maximum number of simultaneous connections to
the share. The Description property describes the purpose of the share.

 You set the MaxAllow and Description properties using the SetShareInfo()
method of the Win32_Share object. The basic syntax is

$shareObject.setShareInfo(MaxAllow,Description)

AllowMaximum : True

Caption : Default share

Description : Default share

InstallDate :

MaximumAllowed :

Path : C:\

Scope : System.Management.ManagementScope

Options : System.Management.ObjectGetOptions

ClassPath : \\TECHPC89\root\cimv2:Win32_Share

Properties : {AccessMask, AllowMaximum, Caption, Description...}

SystemProperties : {__GENUS, __CLASS, __SUPERCLASS, __DYNASTY...}

Qualifiers : {dynamic, Locale, provider, UUID}

Site :

Container :

get-wmiobject -class win32_share -computername Server43,
Server27, Server82

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking312

where $shareObject is a reference to a Win32_Share object, MaxAllow is the desired
maximum number of users, and Description is the desired description. Set the maxi-
mum number of users with a value between 1 and 2,147,483,647. Use a value of 0 to
allow an unlimited number of users.

 You also can set the Name, Path Caption, Description, and MaximumAllowed
values using the related properties.

 You can reference a Win32_Share object by storing the object in a variable.
A quick way to specify a WMI query is to use the –Filter parameter. This parameter
specifi es a Where clause to use as a fi lter. In the following example, you get a refer-
ence to the Logs share and store the related object in the $share variable:

$share = get-wmiobject -class win32_share -filter "name='logs'"

 Note the syntax for the Where clause in the string passed to the –Filter parameter.
The share must exist or the value won’t be set. Because you use double quotes to
enclose the string, you must use single quotes to match a specifi c property value.
After you have a reference to the Win32_Share object, you can call the SetShare-
Info() method to set the desired values. An example and sample output follow:

$share = get-wmiobject -class win32_share -filter "name='logs'"
$share.setShareInfo(255,"Logging Share")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 2

 The return value in the output is what you want to focus on. A return value of
0 indicates success. Any other return value indicates an error. Here, the return value
of 2 indicates an Access Denied error, which can occur if you forget to use an admin-
istrator prompt or don’t have the correct privileges to manage the share.

 You can store the return value in a variable and then process the results. Here’s
an example with sample output:

$share = get-wmiobject -class win32_share -filter "name='logs'"
$results = $share.setShareInfo(255,"Logging Share")
write-host $results.returnvalue

0

$share = get-wmiobject -class win32_share -filter "name='logs'"
$share.setShareInfo(255,"Logging Share")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 2

$share = get-wmiobject -class win32_share -filter "name='logs'"
$results = $share.setShareInfo(255,"Logging Share")
write-host $results.returnvalue

0

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 313

 Here, you obtain a reference to the Logs share. You then set the maximum
 number of users to 255 and the description to Logging Share. To verify the change,
you store the results in a variable and display the return value.

Creating Shares

 At an elevated administrator PowerShell prompt, you can create shares using a
static Create() method of the Win32_Share class. The basic syntax is

$shareObject.Create(FolderPath, ShareName, ShareType, MaxAllow,Description)

 where $shareObject is a reference to a Win32_Share object, FolderPath is the path to
the share, ShareName is the name of the share, ShareType is a valid type indicator,
MaxAllow is the desired maximum number of users, and Description is the desired
description. As long as you have the appropriate permissions, PowerShell should be
able to create the share. A common error you might see occurs when a like-named
share already exists.

 The easiest way to create a class instance for Win32_Share is to use the [wmiclass]
alias as shown in this example:

$share = [wmiclass]"Win32_Share"

 After you’ve created a class instance, you can create the share.

$share.Create("c:\data", "Data", 0, 255,"Data Share")

 The format and values of the returned results are the same as those for the
SetShareInfo() method. A return value of 0 indicates success. Any other return value
indicates an error. A complete example and sample output follow:

$share = [wmiclass]"Win32_Share"
$results = $share.Create("c:\data", "Data", 0, 0,"Data Share")
write-host $results.returnvalue

0

 Here, you obtain a reference to the Win32_Share class. You then create a Data
share mapped to C:\Data. You specify the share type as a disk share and allow an
unlimited number of users to connect to the share. To verify the change, you store
the results in a variable and display the return value.

 NOTE After you create a share, you’ll want to set the share permissions. By default,

the share is created so that the implicit group Everyone has Read access and no other

groups or users have access.

$share = [wmiclass]"Win32_Share"
$results = $share.Create("c:\data", "Data", 0, 0,"Data Share")
write-host $results.returnvalue

0

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking314

Deleting Shares

At an elevated administrator PowerShell prompt, you can delete a share using the
Delete() method of a Win32_Share object. The basic syntax is

$shareObject.delete()

where $shareObject is a reference to a Win32_Share object that you want to delete.
As with the other methods, the Delete() method returns results that indicate success
or failure. The format and values are the same as those discussed previously.

You can delete the Data share created previously as shown in the following
example and sample output:

$share = get-wmiobject -class win32_share -filter "name='data'"
$results = $share.delete()

write-host $results.returnvalue

0

Managing Printers

As an administrator, you need to do two main things to allow users throughout a
network to access print devices connected to a Windows computer: you need to set
up a print server, and you need to use the print server to share print devices on the
network. A print server provides a central location for sharing printers on a network.
When many users require access to the same printers, you should confi gure print
servers in the domain. With Windows Server 2008 and later, you must specifi cally
confi gure a server to be a print server.

Two types of print devices are used on a network: local print devices and network
print devices. A local print device is a print device that’s physically attached to the
user’s computer and employed only by the user who is logged on to that computer.
A network print device is a print device that’s set up for remote access over the net-
work. This can be a print device attached directly to a print server or a print device
attached directly to the network through a network interface card (NIC).

A print server is a workstation or server confi gured to share one or more printers.
These printers can be physically attached to the computer or the network. A limit
on the number of allowed connections is the disadvantage to using a workstation
operating system over a server operating system. With Windows Server 2008 or
later, on the other hand, you don’t have to worry about operating system–enforced
connection limits.

$share = get-wmiobject -class win32_share -filter "name='data'"
$results = $share.delete()

write-host $results.returnvalue

0

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 315

 The print server’s primary job is to share the print device out to the network and
to handle print spooling. The main advantages of print servers are that the printer
will have a centrally managed print queue and you don’t have to install printer driv-
ers on client systems.

 You don’t have to use a print server, however. You can connect users directly to
a network-attached printer. When you do this, the network printer is handled much
like a local printer attached directly to the user’s computer. The key differences are
that multiple users can connect to the printer and that each user has a different
print queue. Each print queue is managed separately, which can make administra-
tion and problem resolution diffi cult.

Getting Information About Printers

 In PowerShell, you use the Win32_Printer class to work with printers. By typing
 Get-Wmiobject -Class Win32_Printer, you can view the printers that are available
as shown in this example and sample output:

get-wmiobject -class win32_printer

Location : 18th Floor

Name : HP CLJ CP3505 PCL6

PrinterState : 131072

PrinterStatus : 1

ShareName : HP3505-PCL6

SystemName : PrinterServer08

Location : 17th Floor

Name : magicolor 2300 DL

PrinterState : 0

PrinterStatus : 3

ShareName : Color2300

SystemName : PrintServer21

 NOTE To query multiple computers, use the –ComputerName parameter of the Get-

WmiObject cmdlet. Here is an example:

get-wmiobject -class win32_printer -computername EngPC45,
TechPC15, EngPC82

 Printers have a number of properties that you can view and manage. To view
the properties of a particular printer, limit the results using a WMI query or a
Where-Object match expression. In the following example and partial output, you
examine the properties of the printer shared as HP3505-PCL6:

get-wmiobject -class win32_printer

Location : 18th Floor

Name : HP CLJ CP3505 PCL6

PrinterState : 131072

PrinterStatus : 1

ShareName : HP3505-PCL6

SystemName : PrinterServer08

Location : 17th Floor

Name : magicolor 2300 DL

PrinterState : 0

PrinterStatus : 3

ShareName : Color2300

SystemName : PrintServer21

get-wmiobject -class win32_printer -computername EngPC45,
TechPC15, EngPC82

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking316

get-wmiobject -class win32_printer -filter "ShareName='HP3505-PCL6'" |
format-list *

Status : OK

Name : HP CLJ CP3505 PCL6

__GENUS : 2

__CLASS : Win32_Printer

__SUPERCLASS : CIM_Printer

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Printer.DeviceID=”HP CLJ CP3505 PCL6”

__PROPERTY_COUNT : 86

__DERIVATION : {CIM_Printer, CIM_LogicalDevice, CIM_

LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC87

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_Printer.

DeviceID=”HP CLJ CP3505 PCL6”

Attributes : 588

Availability :

AvailableJobSheets :

AveragePagesPerMinute : 0

Capabilities : {4, 2, 3, 5}

CapabilityDescriptions : {Copies, Color, Duplex, Collate}

Caption : HP CLJ CP3505 PCL6

Description :

DetectedErrorState : 5

DeviceID : HP CLJ CP3505 PCL6

Direct : False

DoCompleteFirst : True

DriverName : HP Color LaserJet CP3505 PCL 6

To check the TCP/IP confi guration of a network printer, you use the Win32_
TcpIpPrinterPort class. Type Get-Wmiobject -Class Win32_TcpIpPrinterPort,
and you can view all the TCP/IP printer ports that are confi gured, as shown in this
example and sample output:

get-wmiobject -class win32_tcpipprinterport

__GENUS : 2

__CLASS : Win32_TCPIPPrinterPort

__SUPERCLASS : CIM_ServiceAccessPoint

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_TCPIPPrinterPort.Name=”192.168.0.90”

__PROPERTY_COUNT : 17

__DERIVATION : {CIM_ServiceAccessPoint, CIM_LogicalElement,

CIM_ManagedSystemElement}

__SERVER : TECHPC87

get-wmiobject -class win32_printer -filter "ShareName='HP3505-PCL6'" |
format-list *

Status : OK

Name : HP CLJ CP3505 PCL6

__GENUS : 2

__CLASS : Win32_Printer

__SUPERCLASS : CIM_Printer

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_Printer.DeviceID=”HP CLJ CP3505 PCL6”

__PROPERTY_COUNT : 86

__DERIVATION : {CIM_Printer, CIM_LogicalDevice, CIM_

LogicalElement, CIM_ManagedSystemElement}

__SERVER : TECHPC87

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_Printer.

DeviceID=”HP CLJ CP3505 PCL6”

Attributes : 588

Availability :

AvailableJobSheets :

AveragePagesPerMinute : 0

Capabilities : {4, 2, 3, 5}

CapabilityDescriptions : {Copies, Color, Duplex, Collate}

Caption : HP CLJ CP3505 PCL6

Description :

DetectedErrorState : 5

DeviceID : HP CLJ CP3505 PCL6

Direct : False

DoCompleteFirst : True

DriverName : HP Color LaserJet CP3505 PCL 6

get-wmiobject -class win32_tcpipprinterport

__GENUS : 2

__CLASS : Win32_TCPIPPrinterPort

__SUPERCLASS : CIM_ServiceAccessPoint

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_TCPIPPrinterPort.Name=”192.168.0.90”

__PROPERTY_COUNT : 17

__DERIVATION : {CIM_ServiceAccessPoint, CIM_LogicalElement,

CIM_ManagedSystemElement}

__SERVER : TECHPC87

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 317

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_TCPIPPrinterPort.

Name=”192.168.0.90”

ByteCount :

Caption :

CreationClassName : Win32_TCPIPPrinterPort

Description :

HostAddress : 192.168.0.90

InstallDate :

Name : 192.168.0.90

PortNumber : 9100

Protocol : 1

Queue :

SNMPCommunity :

SNMPDevIndex :

SNMPEnabled : False

Status :

SystemCreationClassName : Win32_ComputerSystem

SystemName :

Type :

 NOTE To query multiple computers, use the –ComputerName parameter of the

 Get-WmiObject cmdlet. Here is an example:

get-wmiobject -class win32_tcpipprinterport -computername
EngPC45, TechPC15, EngPC82

 D

Checking Printer Drivers

 Many standard printer drivers are installed by default on computers running the
Windows operating system. Windows stores printer drivers in the %SystemRoot%
\Inf folder. In this folder, printer drivers are stored in fi les beginning with Prn, and
you’ll fi nd driver defi nition fi les with the .pnf extension as well as driver fi les with the
.inf extension. Knowing this, you can write a command to examine the print drivers
that are available on a computer. An example and sample output follow:

get-childitem ((get-item env:systemroot).value + "\inf") -exclude *.pnf |
where-object {$_.name -match "prn"} | format-list Fullname

D FullName : C:\Windows\inf\prnao001.inf

FullName : C:\Windows\inf\prnbr001.inf

FullName : C:\Windows\inf\prnca001.inf

__NAMESPACE : root\cimv2

__PATH : \\TECHPC87\root\cimv2:Win32_TCPIPPrinterPort.

Name=”192.168.0.90”

ByteCount :

Caption :

CreationClassName : Win32_TCPIPPrinterPort

Description :

HostAddress : 192.168.0.90

InstallDate :

Name : 192.168.0.90

PortNumber : 9100

Protocol : 1

Queue :

SNMPCommunity :

SNMPDevIndex :

SNMPEnabled : False

Status :

SystemCreationClassName : Win32_ComputerSystem

SystemName :

Type :

get-wmiobject -class win32_tcpipprinterport -computername
EngPC45, TechPC15, EngPC82

 D

get-childitem ((get-item env:systemroot).value + "\inf") -exclude *.pnf |
where-object {$_.name -match "prn"} | format-list Fullname

D FullName : C:\Windows\inf\prnao001.inf

FullName : C:\Windows\inf\prnbr001.inf

FullName : C:\Windows\inf\prnca001.inf

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking318

Here, you use the Get-ChildItem cmdlet to get fi les in the %SystemRoot%\Inf
folder. You search for fi les that begin with Prn while excluding fi les that end with
.pnf. You use Get-Item Env:Systemroot to retrieve the value of the %SystemRoot%
environment variable, and then you add its string value to “\Inf,” resulting in a full
fi le path, such as C:\Windows\Inf.

Managing Printer Connections

As I write this, PowerShell 2.0 is not ideally suited for the tasks of creating and
managing printer connections—even if you go through WMI to do it. My preferred
workaround is to access Windows Script Host (WSH) via the Component Object
Model (COM). To do this, you can create an instance of the WScript.Network object
via COM and then use its related methods to work with printers. Note that if you
are confi guring printers for a particular user, you should log on as the user or
modify permissions later as appropriate for the user.

 The default printer is the primary printer for a user. This printer is used whenever
a user prints a document and doesn’t select a specifi c destination printer. You can
set a default printer using the SetDefaultPrinter() method of the WScript.Network
object. This method automatically updates the user’s profi le to use the default
printer.

 When you set the default printer, you must specify either the printer’s name or the
share path, such as “HP CLJ CP3505 PCL6” or “\\PrintServer72\Color Printer03”.
Here is an example:

$wn = New-Object -ComObject WScript.Network
$wn.SetDefaultPrinter("\\PrintServer72\ColorPrinter03")

 You can manage connections to network printers in much the same way as
you manage connections to network drives. You map printer connections using
the AddWindowsPrinterConnection() method of the WScript.Network object. You
remove printer connections using the RemovePrinterConnection() method of the
WScript.Network object.

 The AddWindowsPrinterConnection() method expects to be passed the path to
the network printer, such as

$wn = New-Object -ComObject WScript.Network
$wn.AddWindowsPrinterConnection("\\PrintServer72\ColorPrinter03")

 After you call AddWindowsPrinterConnection(), WSH attempts to connect to
the print server and validate that the printer is available. If WSH can connect to the
print server and the printer is valid, Windows creates the printer connection and
 automatically transfers the appropriate print drivers from the print server to the
local computer.

$wn = New-Object -ComObject WScript.Network
$wn.SetDefaultPrinter("\\PrintServer72\ColorPrinter03")

$wn = New-Object -ComObject WScript.Network
$wn.AddWindowsPrinterConnection("\\PrintServer72\ColorPrinter03")

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 319

 When you are fi nished working with a network printer, you might want to
remove the connection. To do this, you can use the RemovePrinterConnection()
method. Specify the local name of the printer you want to disconnect, like this:

$wn = New-Object -ComObject WScript.Network
$wn.RemovePrinterConnection("HP CLJ CP3505 PCL6")

Managing TCP/IP Networking

 Windows PowerShell provides a dynamic environment for working with TCP/IP
 confi gurations. If you want to install networking on a computer, you must install
 TCP/IP networking and a network adapter. Windows uses TCP/IP as the default wide
area network (WAN) protocol.

 Normally, networking is installed during Windows setup. You can also install
TCP/IP networking through local area connection properties. Windows computers
support IP version 4 (IPv4) addressing and IP version 6 (IPv6) addressing.

Getting Information About Network Adapters

 A local area connection is created automatically if a computer has a network adapter
and is connected to a network. If a computer has multiple network adapters and is
connected to a network, you’ll have one local area connection for each adapter.
If no network connection is available, you should connect the computer to the
 network or create a different type of connection.

Computers use IP addresses to communicate over TCP/IP. Windows provides the
following ways to confi gure IP addressing:

 Manually IP addresses that are assigned manually are called static IP
 addresses. Static IP addresses are fi xed and don’t change unless you change
them. You usually assign static IP addresses to Windows servers, and when
you do this, you need to confi gure additional information to help the server
navigate the network.

 Dynamically A Dynamic Host Confi guration Protocol (DHCP) server (if
one is installed on the network) assigns dynamic IP addresses at startup, and
the addresses might change over time. Dynamic IP addressing is the default
confi guration.

 Alternatively (IPv4 only) When a computer is confi gured to use DHCPv4
and no DHCPv4 server is available, Windows Server 2008 assigns an alternate
private IP address automatically. By default, the alternate IPv4 address is
in the range from 169.254.0.1 to 169.254.255.254, with a subnet mask of
255.255.0.0. You can also specify a user-confi gured alternate IPv4 address,
which is particularly useful for laptop users.

$wn = New-Object -ComObject WScript.Network
$wn.RemovePrinterConnection("HP CLJ CP3505 PCL6")

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking320

You can use Win32_NetworkAdapter and Win32_NetworkAdapterConfi gura-
tion objects to examine the confi guration of each network adapter on a computer.
While Win32_NetworkAdapter stores basic information for each network adapter,
Win32_NetworkAdapterConfi guration stores the detailed confi guration for each
adapter. Knowing this, you might be tempted to use only Win32_NetworkAdapter-
Confi guration.

However, most computers have a large number of pseudoadapters. As a result, if
you don’t know the specifi c adapter you want to examine, you’re going to get lots of
extraneous information. Therefore, the technique you want to use is this:

 1. Use Win32_NetworkAdapter to get the index value of a specifi c adapter. On
most computers, the primary network adapter has a network connection ID
of Local Area Connection.

 2. Use Win32_NetworkAdapterConfi guration with a Where clause or fi lter that
gets the information for a specifi c adapter. The confi guration details provide
complete information on the TCP/IP confi guration of the adapter as well as
the media access control (MAC) address of the adapter, which you need in
order to make reservations on a DHCP server.

 Knowing this, you can get the confi guration for a computer’s primary adapter as
shown in the following example and sample output:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"

$index = $na.index
get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

__PATH : \\ROOM5\root\cimv2:Win32_NetworkAdapterConfiguration.Index=4

DHCPLeaseExpires : 20090129095440.000000-480

Index : 4

Description : Intel(R) PRO/1000 PM Network Connection

DHCPEnabled : True

DHCPLeaseObtained : 20090128095440.000000-480

DHCPServer : 192.168.1.1

DNSDomain :

DNSDomainSuffixSearchOrder :

DNSEnabledForWINSResolution : False

DNSHostName : TechPC242

DNSServerSearchOrder : {68.87.78.177, 68.77.75.78, 68.77.79.176}

DomainDNSRegistrationEnabled : False

FullDNSRegistrationEnabled : True

IPAddress : {192.168.1.104, fe80::7330:2226:ee62:2312}

IPConnectionMetric : 1

IPEnabled : True

IPFilterSecurityEnabled : False

WINSEnableLMHostsLookup : True

WINSHostLookupFile :

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"

$index = $na.index
get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"

__PATH : \\ROOM5\root\cimv2:Win32_NetworkAdapterConfiguration.Index=4

DHCPLeaseExpires : 20090129095440.000000-480

Index : 4

Description : Intel(R) PRO/1000 PM Network Connection

DHCPEnabled : True

DHCPLeaseObtained : 20090128095440.000000-480

DHCPServer : 192.168.1.1

DNSDomain :

DNSDomainSuffixSearchOrder :

DNSEnabledForWINSResolution : False

DNSHostName : TechPC242

DNSServerSearchOrder : {68.87.78.177, 68.77.75.78, 68.77.79.176}

DomainDNSRegistrationEnabled : False

FullDNSRegistrationEnabled : True

IPAddress : {192.168.1.104, fe80::7330:2226:ee62:2312}

IPConnectionMetric : 1

IPEnabled : True

IPFilterSecurityEnabled : False

WINSEnableLMHostsLookup : True

WINSHostLookupFile :

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 321

WINSPrimaryServer :

WINSScopeID :

WINSSecondaryServer :

DatabasePath : %SystemRoot%\System32\drivers\etc

DeadGWDetectEnabled :

DefaultIPGateway : {192.168.1.1}

DefaultTOS :

DefaultTTL :

ForwardBufferMemory :

GatewayCostMetric : {0}

IGMPLevel :

InterfaceIndex : 7

IPPortSecurityEnabled :

IPSecPermitIPProtocols : {}

IPSecPermitTCPPorts : {}

IPSecPermitUDPPorts : {}

IPSubnet : {255.255.255.0, 64}

MACAddress : 89:76:FF:D4:D6:35

MTU :

NumForwardPackets :

TcpipNetbiosOptions : 0

TcpMaxConnectRetransmissions :

TcpMaxDataRetransmissions : 5

TcpNumConnections :

TcpWindowSize :

Scope : System.Management.ManagementScope

 From this information, you can determine the computer’s

 IPv4 and IPv6 addresses.

 IPv4 subnet mask.

 Default IP gateway.

 MAC address.

 DNS domain.

 DNS domain suffi x search order.

 DNS server search order.

 Domain DNS registration status.

 DHCP status.

 DHCP lease.

 DHCP server.

 With Win32_NetworkAdapter, you also can use the value of the NetConnection-
Status property to check for connected adapters because all connected adapters
are in use and active. This ensures you check the confi guration of all active adapt-
ers on a computer. The value you are looking for is 2. Knowing this, you can get
confi guration details for each connected adapter using the technique shown in this
example and sample output:

WINSPrimaryServer :

WINSScopeID :

WINSSecondaryServer :

DatabasePath : %SystemRoot%\System32\drivers\etc

DeadGWDetectEnabled :

DefaultIPGateway : {192.168.1.1}

DefaultTOS :

DefaultTTL :

ForwardBufferMemory :

GatewayCostMetric : {0}

IGMPLevel :

InterfaceIndex : 7

IPPortSecurityEnabled :

IPSecPermitIPProtocols : {}

IPSecPermitTCPPorts : {}

IPSecPermitUDPPorts : {}

IPSubnet : {255.255.255.0, 64}

MACAddress : 89:76:FF:D4:D6:35

MTU :

NumForwardPackets :

TcpipNetbiosOptions : 0

TcpMaxConnectRetransmissions :

TcpMaxDataRetransmissions : 5

TcpNumConnections :

TcpWindowSize :

Scope : System.Management.ManagementScope

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking322

$na = get-wmiobject Win32_NetworkAdapter –filter "NetConnectionStatus=2"

$na | foreach {
 $index = $_.index
 get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"
}

DHCPEnabled : True

IPAddress : {192.168.10.152}

DefaultIPGateway : {192.168.10.1}

DNSDomain :

ServiceName : e1express

Description : Intel(R) PRO/1000 PM Network Connection

Index : 4

A complete list of values for the NetConnectionStatus and their meaning are
as follows: 0 (disconnected), 1 (connecting), 2 (connected), 3 (disconnecting),
4 (hardware not present), 5 (hardware disabled), 6 (hardware malfunction), 7 (media
disconnected), 8 (authenticating), 9 (authentication succeeded), and 10 (authentica-
tion failed).

In the following example, you check for and display the state of the local area
connection:

$na = get-wmiobject Win32_NetworkAdapter -filter "NetConnectionID='Local
Area Connection'"
$status = $na.NetConnectionStatus
switch -regex ($status) {
 [0] { "Disconnected." }
 [1] { "Connecting." }
 [2] { "Connected. The connection is active." }
 [3] { "Disconnecting." }
 [4-6] { "Hardware is disabled, malfunctioning or not present. Check and
enable hardware."}
 [7] { "Media is disconnected; connect the network cable."}
 [8-9] { "Authenticating."}
 [10] { "Authentication failed."}
}

Connected. The connection is active.

$na = get-wmiobject Win32_NetworkAdapter –filter "NetConnectionStatus=2"

$na | foreach {
 $index = $_.index
 get-wmiobject Win32_NetworkAdapterConfiguration -filter "Index=$index"
}

DHCPEnabled : True

IPAddress : {192.168.10.152}

DefaultIPGateway : {192.168.10.1}

DNSDomain :

ServiceName : e1express

Description : Intel(R) PRO/1000 PM Network Connection

Index : 4

$na = get-wmiobject Win32_NetworkAdapter -filter "NetConnectionID='Local
Area Connection'"
$status = $na.NetConnectionStatus
switch -regex ($status) {
 [0] { "Disconnected." }
 [1] { "Connecting." }
 [2] { "Connected. The connection is active." }
 [3] { "Disconnecting." }
 [4-6] { "Hardware is disabled, malfunctioning or not present. Check and
enable hardware."}
 [7] { "Media is disconnected; connect the network cable."}
 [8-9] { "Authenticating."}
 [10] { "Authentication failed."}
}

Connected. The connection is active.

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 323

Configuring Static IP Addressing

When you assign a static IP address, you need to tell the computer the IP address
you want to use, the subnet mask for this IP address, and, if necessary, the default
gateway to use for internetwork communications. An IP address is a numeric identi-
fier for a computer. IP addressing schemes vary according to how your network is
configured, but they’re normally assigned based on a particular network segment.

IPv6 addresses and IPv4 addresses are very different. With IPv6, the first
64 bits represent the network ID, and the remaining 64 bits represent the network
 interface. With IPv4, a variable number of the initial bits represent the network ID,
and the rest of the bits represent the host ID. For example, if you’re working with
IPv4 and a computer on the network segment 192.168.1.0 with a subnet mask of
255.255.255.0, the first three bits represent the network ID, and the address range
you have available for computer hosts is from 192.168.1.1 to 192.168.1.254. In this
range, the address 192.168.1.255 is reserved for network broadcasts.

If you’re on a private network that is indirectly connected to the Internet,
you should use private IPv4 addresses. Table 11-1 summarizes private network IPv4
addresses.

TABLE 11-1 Private IPv4 Network Addressing

PRIVATE NETWORK ID SUBNET MASK NETWORK ADDRESS RANGE

10.0.0.0 255.0.0.0 10.0.0.0–10.255.255.255

172.16.0.0 255.240.0.0 172.16.0.0–172.31.255.255

192.168.0.0 255.255.0.0 192.168.0.0–192.168.255.255

All other IPv4 network addresses are public and must be leased or purchased.
If the network is connected directly to the Internet and you’ve obtained a range of
IPv4 addresses from your Internet service provider, you can use the IPv4 addresses
you’ve been assigned.

When you are working with an elevated administrator PowerShell prompt, you
can use the methods Win32_NetworkAdapterConfiguration provides to change
a computer’s TCP/IP configuration. Computers that have directly assigned IP
 addresses are said to use static IP addressing. Win32_NetworkAdapterConfigura-
tion provides methods and properties for working with static IP addressing. Useful
properties include the following:

 DNSDomain Specifies the DNS suffix for the connection that overrides the
default DNS names already configured for use. Normally the entry is blank.

 DNSDomainSuffixSearchOrder Specifies the DNS suffixes to use for the
connection and their search order. DNS suffixes are used to resolve unquali-
fied computer names. Normally, this entry includes the parent domain as the
first entry, which means the DNS suffix for the parent domain is added to
unqualified computer names.

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking324

 DNSEnabledForWINSResolution Specifi es whether DNS can be used for
resolving Windows Internet Naming Service (WINS) lookups. By default, this
is normally set to False.

 DNSServerSearchOrder Specifi es IP addresses of DNS servers in the order
in which they should be used.

 DomainDNSRegistrationEnabled Specifi es whether IP addresses for this
connection are registered in DNS under the DNS suffi x provided for the
 connection. By default, this is normally set to False.

 FullDNSRegistrationEnabled Specifi es whether IP addresses for this
 connection are registered in DNS under the computer’s fully qualifi ed
 domain name. By default, this is normally set to True.

 Useful methods include the following:

 SetDNSDomain() Sets the DNS domain suffi x for the connection. This
overrides the default DNS names already confi gured for use. This method
accepts a string value that specifi es the suffi x to use.

 SetDNSServerSearchOrder() Sets the IP addresses of DNS servers in the
order in which they should be used. This method accepts a string or array of
strings that sets the IP addresses of the DNS servers to use.

 SetDynamicDNSRegistration() Enables automatic registration of
IP addresses used for this connection. The IP addresses are registered in
DNS under the computer’s fully qualifi ed domain name. This method accepts
a Boolean value of $True or $False.

 SetGateways() Sets the IP addresses and metric of gateways to use.
 Accepts a string or array of strings containing gateway IP addresses as the
fi rst value. This method accepts an integer or array of integers specifying
the metric as the second parameter.

 SetWINSServer() Sets the IP addresses of WINS servers in the order in
which they should be used. This method accepts a string or array of strings
that sets the IP addresses of the WINS servers to use.

If a computer uses dynamic or static IP addressing and you want to change the
TCP/IP confi guration, you can use the EnableStatic() method to enable static IP
 addressing and specify the IP addresses and subnet masks to use. The basic syntax is

$nacObject.EnableStatic(IPAddress,SubnetMask)

where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,
IPAddress is the desired IP address entered as a string, and SubnetMask is the
desired subnet mask entered as a string value, as shown in this example and sample
output:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 325

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.EnableStatic("192.168.1.100","255.255.255.0")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

 Here, you set an IP address of 192.168.1.100 and a subnet mask of 255.255.255.0.
The return value in the output is what you want to focus on. A return value of
0 indicates success. Any other return value indicates an error. Typically, errors occur
because you aren’t using an elevated administrator PowerShell prompt or haven’t
accessed the correct network adapter.

 If a computer uses default gateways that are not set by DHCP, you can use the
SetGateways() method to specify the gateways to use by IP address and metric.
When you assign multiple gateways, Windows uses the gateway metric to deter-
mine which gateway to use fi rst. The basic syntax is

$nacObject.SetGateways(DefaultIPGateway,Metric)

 where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,
DefaultIPGateway is the desired gateway address entered as a string value or an
array of strings, and Metric is the desired gateway metric entered as an integer
value or an array of integer values. In the following example, you set a default
gateway address of 192.168.1.1 and a metric of 1:

$nac.SetGateways("192.168.1.1",1)

 As before, a return value of 0 indicates success. Any other return value indicates
an error. This is true for all the examples in this section.

 In the following example, you set three default gateways, each with a different
metric:

$g = "192.168.1.1", "192.168.2.1", "192.168.3.1"
$m = 1,2,3
$nac.setgateways($g,$m)

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.EnableStatic("192.168.1.100","255.255.255.0")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

$g = "192.168.1.1", "192.168.2.1", "192.168.3.1"
$m = 1,2,3
$nac.setgateways($g,$m)

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking326

If a computer uses DNS servers that are not set by DHCP, you can use the
 SetDNSServerSearchOrder() method to specify the DNS servers to use by IP address.
The basic syntax is

$nacObject.SetDNSServerSearchOrder(DNSServerIPAddresses)

where $nacObject is a reference to a Win32_NetworkAdapterConfi guration object,
and DNSServerIPAddresses are the IP addresses for the DNS servers to use entered
as a string or an array of strings. In the following example, you specify the IP address
of the primary and secondary DNS servers:

$dns = "10.10.10.52", "10.10.10.68"
$nac.SetDNSServerSearchOrder($dns)

Confi guring Dynamic IP Addressing

Computers can have IP addresses that are dynamically assigned by DHCP servers.
When an IP address is given to a client by a server, the client is said to have a lease
on the IP address. The term lease is used because the assignment is not permanent.
The DHCP server sets the duration of the lease when the lease is granted.

 Win32_NetworkAdapterConfi guration provides methods and properties for
working with dynamic IP addressing. Useful properties include the following:

 DHCPEnabled Specifi es whether the adapter uses DHCP. If True, you can
use DHCPLeaseObtained to determine when a computer obtains the lease on
the IP address assigned by DHCP.

 DHCPServer Specifi es the IP addressees of DHCP servers.

 DHCPLeaseObtained Specifi es when the computer obtains the lease on
the IP address assigned by DHCP. The value is specifi ed as a DateTime string.

 DHCPLeaseExpires Specifi es when the lease on the IP address expires. The
value is specifi ed as a DateTime string.

 Useful methods include the following:

 EnableDHCP() Enables DHCP on the selected adapter. This method
 requires no parameters.

 ReleaseDHCPLease() Releases the DHCP lease and related addressing
information. This method requires no parameters.

 RenewDHCPLease() Releases the DHCP lease and then renews it. This
method requires no parameters.

 When you have a reference to a Win32_NetworkAdapterConfi guration object
for a connection that uses DHCP, you can use the properties of this object to view
DHCP-related information. An example and sample output follow:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index

$dns = "10.10.10.52", "10.10.10.68"
$nac.SetDNSServerSearchOrder($dns)

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 327

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac | format-list DHCPLeaseExpires, DHCPEnabled, DHCPLeaseObtained, `
DHCPServer

DHCPLeaseExpires : 20090220080155.000000-480

DHCPEnabled : True

DHCPLeaseObtained : 20090219080155.000000-480

DHCPServer : 192.168.1.1

 To convert the DateTime strings to a more readable form, you can use the
 ConvertToDateTime() method as shown in this example and sample output:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$gotlease = $nac.ConvertToDateTime($nac.dhcpleaseobtained)
$explease = $nac.ConvertToDateTime($nac.dhcpleaseexpires)

write-host ("DHCP Lease Obtained: $gotlease")
write-host ("DHCP Lease Expires: $explease")

DHCP Lease Obtained: 02/19/2009 14:42:56

DHCP Lease Expires: 02/20/2009 14:42:56

 NOTE If the adapter you are working with uses static IP addressing, the previous

example will not work, and you’ll get multiple errors in the output. The reason for this

is that the DHCP values are set to Null and cannot be converted to DateTime objects.

 You manage a computer’s dynamic IP addressing confi guration at an elevated
administrator PowerShell prompt. When you have a reference to a Win32_Network-
AdapterConfi guration object, you can use the EnableDHCP() method to enable
DHCP. As shown in the following example and sample output, all you need to do is
call EnableDHCP() on the Win32_NetworkAdapterConfi guration object:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.EnableDHCP()

$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac | format-list DHCPLeaseExpires, DHCPEnabled, DHCPLeaseObtained, `
DHCPServer

DHCPLeaseExpires : 20090220080155.000000-480

DHCPEnabled : True

DHCPLeaseObtained : 20090219080155.000000-480

DHCPServer : 192.168.1.1

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$gotlease = $nac.ConvertToDateTime($nac.dhcpleaseobtained)
$explease = $nac.ConvertToDateTime($nac.dhcpleaseexpires)

write-host ("DHCP Lease Obtained: $gotlease")
write-host ("DHCP Lease Expires: $explease")

DHCP Lease Obtained: 02/19/2009 14:42:56

DHCP Lease Expires: 02/20/2009 14:42:56

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.EnableDHCP()

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking328

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

Here, you enable DHCP on the local area connection. A return value of 0 indicates
success. Any other return value indicates an error. Typically, errors occur because
you aren’t using an elevated administrator PowerShell prompt or haven’t accessed
the correct network adapter.

When you are working with a Win32_NetworkAdapterConfi guration object, you
can release or renew the adapter’s DHCP lease by calling ReleaseDHCPLease() or
RenewDHCPLease() as appropriate. In the following example, you renew the lease
on the local area connection:

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.RenewDHCPLease()

Confi guring Windows Firewall

Windows Firewall is included with Windows XP with Service Pack 2 and later versions
of the Windows operating system. When you are confi guring Windows systems, you’ll
often want to determine whether Windows Firewall is enabled or disabled and then
either enable or disable the fi rewall as appropriate. You might also want to determine
what fi rewall ports are open or closed and then either open or close ports as appro-
priate. In PowerShell, you can easily perform these basic fi rewall management tasks.

Viewing and Managing Windows Firewall Settings

Windows Firewall supports three types of profi les:

 Domain The profi le applicable when a computer is connected to a domain.

 Private The profi le applicable when a computer is a member of a work-
group or connected to a home network.

 Public The profi le applicable when a computer is connected to a public
network.

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

$na = get-wmiobject Win32_NetworkAdapter -filter `
"NetConnectionID='Local Area Connection'"
$index = $na.index
$nac = get-wmiobject Win32_NetworkAdapterConfiguration -filter `
"Index=$index"

$nac.RenewDHCPLease()

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 329

 You manage Windows Firewall using the HNetCfg.FwMgr COM object. You can
create an instance of this object so that you can work with Windows Firewall, as
shown in the following example:

$firewall = new-object –com HNetCfg.FwMgr

 Although you can view Windows Firewall settings at a standard PowerShell
prompt, you must access an elevated administrator PowerShell prompt to change
most fi rewall settings. As shown in the following example and sample output, the
top-level fi rewall object has several methods and properties you can use:

$firewall = new-object -com HNetCfg.FwMgr
$firewall | get-member

 TypeName: System.__ComObject#{f7898af5-cac4-4632-a2ec-da06e5111af2}

Name MemberType Definition

---- ---------- ----------

IsIcmpTypeAllowed Method void IsIcmpTypeAllowed (NET_FW_IP_VERSION

IsPortAllowed Method void IsPortAllowed (string, NET_FW_IP_VERSION

RestoreDefaults Method void RestoreDefaults ()

CurrentProfileType Property NET_FW_PROFILE_TYPE_ CurrentProfileType ()

LocalPolicy Property INetFwPolicy LocalPolicy () {get}

 Calling the RestoreDefaults() method on the fi rewall object restores the default
settings as shown in this example:

$firewall = new-object -com HNetCfg.FwMgr
$firewall.restoredefaults()

 Accessing the CurrentProfi leType property displays the current profi le type:
0 (Private), 1 (Public), or 2 (Domain). This is shown in the following example and
sample output:

$firewall = new-object -com HNetCfg.FwMgr
$firewall.currentprofiletype

1

 Most of the time, you’ll want to work with the LocalPolicy property, which
returns an object representing the local fi rewall policy. Using this object, you can
get objects representing the current, active profi le or any specifi c fi rewall profi le
by name.

$firewall = new-object -com HNetCfg.FwMgr
$firewall | get-member

 TypeName: System.__ComObject#{f7898af5-cac4-4632-a2ec-da06e5111af2}

Name MemberType Definition

---- ---------- ----------

IsIcmpTypeAllowed Method void IsIcmpTypeAllowed (NET_FW_IP_VERSION

IsPortAllowed Method void IsPortAllowed (string, NET_FW_IP_VERSION

RestoreDefaults Method void RestoreDefaults ()

CurrentProfileType Property NET_FW_PROFILE_TYPE_ CurrentProfileType ()

LocalPolicy Property INetFwPolicy LocalPolicy () {get}

$firewall = new-object -com HNetCfg.FwMgr
$firewall.restoredefaults()

$firewall = new-object -com HNetCfg.FwMgr
$firewall.currentprofiletype

1

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking330

You use the CurrentProfi le property of the Local Firewall Policy object to get the
current, active profi le, as shown in this example and sample output:

$firewall = new-object -com HNetCfg.FwMgr
$current = $firewall.localpolicy.currentprofile
$current | format-list *

Type : 1

FirewallEnabled : False

ExceptionsNotAllowed : False

NotificationsDisabled : False

UnicastResponsesToMulticastBroadcastDisabled : False

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

You use the GetProfi leByType() method of the Local Firewall Policy object to get
a specifi c profi le, as shown in the following example and sample output:

$firewall = new-object -com HNetCfg.FwMgr
$private = $firewall.localpolicy.getprofilebytype(0)
$private | format-list *

Type : 0

FirewallEnabled : True

ExceptionsNotAllowed : False

NotificationsDisabled : True

UnicastResponsesToMulticastBroadcastDisabled : True

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

Regardless of whether you are working with the current profi le or a profi le of a
specifi c type, you have the following properties available:

 AuthorizedApplications Returns a collection of objects representing
 applications authorized to communicate through the fi rewall. By accessing
individual objects in the collection, you control authorized applications.
Properties can be viewed or set by their name as shown in the following
example and sample output:

$firewall = new-object -com HNetCfg.FwMgr
$current = $firewall.localpolicy.currentprofile
$current | format-list *

Type : 1

FirewallEnabled : False

ExceptionsNotAllowed : False

NotificationsDisabled : False

UnicastResponsesToMulticastBroadcastDisabled : False

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

$firewall = new-object -com HNetCfg.FwMgr
$private = $firewall.localpolicy.getprofilebytype(0)
$private | format-list *

Type : 0

FirewallEnabled : True

ExceptionsNotAllowed : False

NotificationsDisabled : True

UnicastResponsesToMulticastBroadcastDisabled : True

RemoteAdminSettings : System.__ComObject

IcmpSettings : System.__ComObject

GloballyOpenPorts : {Intel(R) Viiv(TM) Media}

Services : {File and Printer Sharing}

AuthorizedApplications : {Roxio Upnp Service, SPCM}

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 331

$firewall = new-object -com HNetCfg.FwMgr
$apps = $firewall.localpolicy.currentprofile.authorizedapplications
foreach ($a in $apps) {$a}

Name : Roxio Upnp Service

ProcessImageFileName : C:\Program Files\Roxio\Easy Media Creator 8\

Digital Home\RoxUpnpServer.exe

IpVersion : 2

Scope : 0

RemoteAddresses : *

Enabled : True

 ExceptionsNotAllowed Displays or controls whether fi rewall exceptions
are allowed. This property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.exceptionsnotallowed = $True
write-host $cp.exceptionsnotallowed

True

 FirewallEnabled Displays or controls whether the fi rewall is enabled. This
property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.firewallenabled = $True
write-host $cp.firewallenabled

True

 GloballyOpenPorts Returns a collection of objects representing open
ports. By accessing individual objects in the collection, you control open
ports. Properties can be viewed or set by their name as shown in the follow-
ing example and sample output:

$firewall = new-object -com HNetCfg.FwMgr
$oports = $firewall.localpolicy.currentprofile.globallyopenports
foreach ($o in $oports) {$o}

$firewall = new-object -com HNetCfg.FwMgr
$apps = $firewall.localpolicy.currentprofile.authorizedapplications
foreach ($a in $apps) {$a}

Name : Roxio Upnp Service

ProcessImageFileName : C:\Program Files\Roxio\Easy Media Creator 8\

Digital Home\RoxUpnpServer.exe

IpVersion : 2

Scope : 0

RemoteAddresses : *

Enabled : True

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.exceptionsnotallowed = $True
write-host $cp.exceptionsnotallowed

True

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.firewallenabled = $True
write-host $cp.firewallenabled

True

$firewall = new-object -com HNetCfg.FwMgr
$oports = $firewall.localpolicy.currentprofile.globallyopenports
foreach ($o in $oports) {$o}

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking332

Name : Adobe Version Cue CS3 Server

IpVersion : 2

Protocol : 6

Port : 50901

Scope : 0

RemoteAddresses : *

Enabled : True

BuiltIn : False

 IcmpSettings Returns a collection of objects representing Internet Control
Message Protocol (ICMP) settings. By accessing individual objects in the
 collection, you control ICMP settings.

$firewall = new-object -com HNetCfg.FwMgr
$icmpsettings = $firewall.localpolicy.currentprofile.icmpsettings
foreach ($i in $icmpsettings) {$i}

AllowOutboundDestinationUnreachable : False

AllowRedirect : False

AllowInboundEchoRequest : False

AllowOutboundTimeExceeded : False

AllowOutboundParameterProblem : False

AllowOutboundSourceQuench : False

AllowInboundRouterRequest : False

AllowInboundTimestampRequest : False

AllowInboundMaskRequest : False

AllowOutboundPacketTooBig : True

 Notifi cationsDisabled Displays or controls whether notifi cations are
disabled. When notifi cations are enabled, messages are displayed to the user
when a program is blocked from receiving inbound connections. This prop-
erty accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.notificationsdisabled = $True
write-host $cp.notificationsdisabled

True

 RemoteAdminSettings Returns a collection of objects representing
remote administration settings. By accessing individual objects in the collec-
tion, you control these settings.

Name : Adobe Version Cue CS3 Server

IpVersion : 2

Protocol : 6

Port : 50901

Scope : 0

RemoteAddresses : *

Enabled : True

BuiltIn : False

$firewall = new-object -com HNetCfg.FwMgr
$icmpsettings = $firewall.localpolicy.currentprofile.icmpsettings
foreach ($i in $icmpsettings) {$i}

AllowOutboundDestinationUnreachable : False

AllowRedirect : False

AllowInboundEchoRequest : False

AllowOutboundTimeExceeded : False

AllowOutboundParameterProblem : False

AllowOutboundSourceQuench : False

AllowInboundRouterRequest : False

AllowInboundTimestampRequest : False

AllowInboundMaskRequest : False

AllowOutboundPacketTooBig : True

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.notificationsdisabled = $True
write-host $cp.notificationsdisabled

True

 Managing Shares, Printers, and TCP/IP Networking CHAPTER 11 333

$firewall = new-object -com HNetCfg.FwMgr
$ras = $firewall.localpolicy.currentprofile.remoteadminsettings
foreach ($r in $ras) {$r | format-list *}

IpVersion : 2

Scope : 1

RemoteAddresses : LocalSubnet

Enabled : False

 UnicastResponsesToMulticastBroadcastDisabled Displays or controls
whether unicast responses are disabled. When unicast responses are en-
abled, Windows Firewall allows unicast responses to multicast or broadcast
network traffi c. This property accepts a Boolean value.

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.unicastresponsestomulticastbroadcastdisabled = $True
write-host $cp.unicastresponsestomulticastbroadcastdisabled

True

 Type Displays the type of profi le you are working with as 0 (Private),
1 (Public), or 2 (Domain).

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
write-host $cp.type

1

Adding and Removing Firewall Ports

 At an elevated administrator PowerShell prompt, you can open and close fi rewall
ports using the Add() and Remove() methods accessible via the HNetCfg.FWOpen-
Port COM object. To add a port, you create a reference to this COM object and then
defi ne the settings for the port as shown in this example:

$PROTOCOL_TCP = 6
$firewall = new-object -com HNetCfg.FwMgr
$port = new-object –com HNetCfg.FWOpenPort

$port.name = "Web Services"
$port.port = 8080
$port.protocol = $PROTOCOL_TCP

$firewall.localpolicy.currentprofile.globallyopenports.Add($port)

$firewall = new-object -com HNetCfg.FwMgr
$ras = $firewall.localpolicy.currentprofile.remoteadminsettings
foreach ($r in $ras) {$r | format-list *}

IpVersion : 2

Scope : 1

RemoteAddresses : LocalSubnet

Enabled : False

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.unicastresponsestomulticastbroadcastdisabled = $True
write-host $cp.unicastresponsestomulticastbroadcastdisabled

True

$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
write-host $cp.type

1

$PROTOCOL_TCP = 6
$firewall = new-object -com HNetCfg.FwMgr
$port = new-object –com HNetCfg.FWOpenPort

$port.name = "Web Services"
$port.port = 8080
$port.protocol = $PROTOCOL_TCP

$firewall.localpolicy.currentprofile.globallyopenports.Add($port)

CHAPTER 11 Managing Shares, Printers, and TCP/IP Networking334

The port name is a descriptive value for anyone who reviews the fi rewall settings.
The port number is the TCP or UDP port to open on the fi rewall. The protocol is the
specifi c TCP or UDP protocol that will be used.

After you create a port, you can verify the settings using the GloballyOpenPorts
property of the applicable profi le. Here is an example and sample output:

$firewall = new-object -com HNetCfg.FwMgr
$oports = $firewall.localpolicy.currentprofile.globallyopenports
$oports | where-object {$_.name -eq "Web Services"}

Name : Web Services

IpVersion : 2

Protocol : 6

Port : 8080

Scope : 0

RemoteAddresses : *

Enabled : True

BuiltIn : False

To remove a port, you create a reference to the HNetCfg.FWOpenPort COM
 object and then identify the port to remove by its port address and protocol
 identifi er as shown in this example:

$PROTOCOL_TCP = 6
$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.globallyopenports.Remove(8080, $PROTOCOL_TCP)

You can verify that the port was removed using the same technique you use to
verify that a port was added. If you can no longer fi nd the port by its name, the port
was removed successfully.

$firewall = new-object -com HNetCfg.FwMgr
$oports = $firewall.localpolicy.currentprofile.globallyopenports
$oports | where-object {$_.name -eq "Web Services"}

Name : Web Services

IpVersion : 2

Protocol : 6

Port : 8080

Scope : 0

RemoteAddresses : *

Enabled : True

BuiltIn : False

$PROTOCOL_TCP = 6
$firewall = new-object -com HNetCfg.FwMgr
$cp = $firewall.localpolicy.currentprofile
$cp.globallyopenports.Remove(8080, $PROTOCOL_TCP)

335

CHAP TER 12

Managing and Securing
the Registry

Understanding Registry Keys and Values 336

Navigating the Registry 338

Managing Registry Keys and Values 341

Comparing Registry Keys 346

Viewing and Managing Registry Security Settings 347

Auditing the Registry 357

The Windows registry stores configuration settings. Using the Registry provider
built into Windows PowerShell, you can view, add, delete, compare, and copy

registry entries. Because the Windows registry is essential to the proper operation
of the operating system, make changes to the registry only when you know how
these changes will affect the system. You should perform all registry changes
within the context of a transaction. Transactions were discussed in the “Creating
Transactions” section in Chapter 7, “Managing Computers with Commands and
Scripts.” With transactions, you can do the following:

 1. Use Start-Transaction to start a transaction before you modify the registry.

 2. Make changes and then verify your changes.

 3. Use Stop-Transaction to finalize your changes or Undo-Transaction to roll
back your changes.

After you finalize a transaction using Stop-Transaction, you can no longer undo
your changes. Additionally, transactions won’t help you identify changes that will
cause problems with the computer and its installed components and applications.
Therefore, before you edit the registry in any way, you should create a system
restore point. This way, if you make a mistake, you can recover the registry and the
system.

 CHAPTER 12 Managing and Securing the Registry336

CAUTION Improperly modifying the Windows registry can cause serious problems.

If the registry becomes corrupted, you might have to reinstall the operating system.

Double-check the commands you use. Make sure that they do exactly what you intend.

Understanding Registry Keys and Values

The Windows registry stores configuration settings for the operating system,
applications, users, and hardware. Registry settings are stored as keys and values,
which are placed under a specific root key controlling when and how the keys
and values are used.

Table 12-1 lists the registry root keys you can work with in PowerShell as well as
a description and the reference name you use to refer to the root key when working
with the Registry provider. Under the root keys, you’ll find the main keys that control
system, user, application, and hardware settings. These keys are organized into a
tree structure, with folders representing keys. Within these folders are the registry
keys that store important service configuration settings and their subkeys.

TABLE 12-1 Keys in the Windows Registry

ROOT KEY REFERENCE NAME DESCRIPTION

HKEY_CURRENT_USER HKCU Stores configuration settings for the
current user.

HKEY_LOCAL_MACHINE HKLM Stores system-level configuration
settings.

HKEY_CLASSES_ROOT HKCR Stores configuration settings for
 applications and files. It also ensures
that the correct application is
opened when a file is accessed.

HKEY_USERS HKU Stores default-user and other-user
 settings by profile.

HKEY_CURRENT_CONFIG HKCC Stores information about the
 hardware profile being used.

Keys that you want to work with must be designated by their folder path. For
example, under HKLM\SYSTEM\CurrentControlSet\Services, you’ll find folders for all
services installed on the system. Values associated with the DNS key in this folder
path allow you to work with the Domain Name System (DNS) service and its
configuration settings.

Key values are stored as a specific data type. Table 12-2 provides a summary of
the main data types used with keys.

 Managing and Securing the Registry CHAPTER 12 337

TABLE 12-2 Registry Key Values and Data Types

DATA TYPE DESCRIPTION REFERENCE NAME EXAMPLE

REG_BINARY Identifies a binary
 value. Binary values
are stored using
base2 (0 or 1 only)
but are displayed and
entered in hexadecimal
(base16) format.

Binary 01 00 14 80 90 00 00
9C 00

REG_DWORD Identifies a binary
data type in which
32-bit integer values
are stored as four
byte-length values in
hexadecimal.

Dword 0x00000002

REG_EXPAND_
SZ

Identifies an expand-
able string value,
which is usually used
with directory paths.

Expandstring %SystemRoot%\dns.exe

REG_MULTI_SZ Identifies a multiple-
string value.

Multistring Tcpip Afd RpcSc

REG_NONE Identifies data without
a particular type.
This data is written as
 binary values but is
displayed and entered
in hexadecimal
(base16) format.

None 23 45 67 80

REG_QWORD Identifies a binary
data type in which
64-bit integer values
are stored as eight
byte-length values in
hexadecimal.

Qword 0x0000EA3FC

REG_SZ Identifies a string
value containing a
 sequence of characters.

String DNS Server

CHAPTER 12 Managing and Securing the Registry338

Navigating the Registry

The core set of features for performing related procedures was discussed previously
in the “Using Providers” section in Chapter 3, “Managing Your Windows PowerShell
Environment,” and include the Registry provider, the cmdlets for working with data
stores listed in Table 3-4, and the cmdlets for working with provider drives listed in
Table 3-5. As long as you know the key path and understand the available key data
types, you can use the Registry provider to view and manipulate keys in a variety of ways.

By default, only the HKLM and HKCU root keys are available in PowerShell. To
make other root keys available, you can register them as new PowerShell drives. The
following example shows how to register HKCR, HKU, and HKCC:

new-psdrive –name hkcr –psprovider registry –root hkey_classes_root
new-psdrive –name hku –psprovider registry –root hkey_users
new-psdrive –name hkcc –psprovider registry –root hkey_current_config

 Now you can directly access these additional root keys. For example, if you want
to access HKCC, you type

set-location hkcc:

 You can access keys and values in any Registry location using Set-Location. For
example, if you want to change the location to HKLM, you type

set-location hklm:

 You can then work with registry keys and values in HKLM. Locations under HKLM
(or any other root key) are navigated in the same way you navigate directory paths.
If you are working with HKLM, for example, you can use Set-Location (or CD) to
change to HKLM\SYSTEM\CurrentControlSet\Services by typing

set-location system\currentcontrolset\services

 Alternatively, to access HKLM and start in this location in the fi rst place, you can
type

set-location hklm:\system\currentcontrolset\services

 NOTE If you specify a nonexistent path, key, or value, an error message is displayed.

Typically, it reads: Cannot find _________ because it does not exist.

 When you are working with a Registry location and want to view the available
keys, type get-childitem (or dir) as shown in the following example and sample
output:

new-psdrive –name hkcr –psprovider registry –root hkey_classes_root
new-psdrive –name hku –psprovider registry –root hkey_users
new-psdrive –name hkcc –psprovider registry –root hkey_current_config

set-location hkcc:

set-location hklm:

set-location system\currentcontrolset\services

set-location hklm:\system\currentcontrolset\services

 Managing and Securing the Registry CHAPTER 12 339

set-location hklm:\system\currentcontrolset\services
get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services

SKC VC Name Property

--- -- ---- --------

 2 0 .NET CLR Data {}

 2 0 .NET CLR Networking {}

 2 0 .NET Data Provider for Oracle {}

 2 0 .NET Data Provider for SqlS... {}

 1 0 .NETFramework {}

 2 7 ACPI {Tag, DisplayName, Group...}

 1 7 Adobe LM Service {Description, DisplayName...}

 1 6 Adobe Version Cue CS2 {DisplayName, Type, Start...}

 1 7 Adobe Version Cue CS3 {Type, Start, ErrorControl...}

 The following information is provided in this output:

 SKC shows the subkey count under the named key.

 VC shows the value count, which is the number of values under the named
key.

 Name shows the name of the subkey.

 Property lists the names of properties for the named key.

 To learn more about navigating the registry, let’s focus on the APCI key. In this
example, you know ACPI has a number of named property values. You can list these
property values by typing get-itemproperty as shown in the following example
and sample output:

set-location hklm:\system\currentcontrolset\services\acpi
get-itemproperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services

PSChildName : acpi

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

Tag : 1

DisplayName : Microsoft ACPI Driver

Group : Boot Bus Extender

ImagePath : system32\drivers\acpi.sys

ErrorControl : 3

Start : 0

Type : 1

set-location hklm:\system\currentcontrolset\services
get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services

SKC VC Name Property

--- -- ---- --------

 2 0 .NET CLR Data {}

 2 0 .NET CLR Networking {}

 2 0 .NET Data Provider for Oracle {}

 2 0 .NET Data Provider for SqlS... {}

 1 0 .NETFramework {}

 2 7 ACPI {Tag, DisplayName, Group...}

 1 7 Adobe LM Service {Description, DisplayName...}

 1 6 Adobe Version Cue CS2 {DisplayName, Type, Start...}

 1 7 Adobe Version Cue CS3 {Type, Start, ErrorControl...}

set-location hklm:\system\currentcontrolset\services\acpi
get-itemproperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services

PSChildName : acpi

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

Tag : 1

DisplayName : Microsoft ACPI Driver

Group : Boot Bus Extender

ImagePath : system32\drivers\acpi.sys

ErrorControl : 3

Start : 0

Type : 1

CHAPTER 12 Managing and Securing the Registry340

You don’t have to access a location to view its properties. The value you provide
to Get-Item Property is a path. In the previous example, the dot (.) refers to the
current working location. If you were working with another drive or location, you
could enter the full path to the key to get the same results, as shown in this example:

get-itemproperty hklm:\system\currentcontrolset\services\acpi

Continuing this example, you know there are two source keys and seven key
values under ACPI. If you access ACPI, you can list the two source keys by typing
get-childitem (or dir) as shown in this example and sample output:

set-location hklm:\system\currentcontrolset\services\acpi
get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services\acpi

SKC VC Name Property

--- -- ---- --------

 1 2 Parameters {AMLIMaxCTObjs,

WHEAOSCImplemented}

 0 3 Enum {0, Count, NextInstance}

 As with Get-ItemProperty, Get-ChildItem also accepts a path. This means you can
use Get-ChildItem and enter the full path to the key to get the same results shown
in the previous example:

get-childitem hklm:\system\currentcontrolset\services\acpi

 If you access the enum key under ACPI, you’ll fi nd several properties, including
Count and NextInstance. Although you can use Get-ChildItem to view the values of
all related properties, you’ll more typically want to view and work with individual
property values. To do this, get the properties and store the results in a variable.
This allows you to then view and work with properties individually as shown in the
following example and sample output:

$p = get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum
$p.count

1

 Alternatively, you can read registry values by referencing the full path and name
of the property value that you want to examine. The basic syntax is

get-itemproperty [–path] KeyPath [–name] ValueName

get-itemproperty hklm:\system\currentcontrolset\services\acpi

set-location hklm:\system\currentcontrolset\services\acpi
get-childitem

 Hive: HKEY_LOCAL_MACHINE\system\currentcontrolset\services\acpi

SKC VC Name Property

--- -- ---- --------

 1 2 Parameters {AMLIMaxCTObjs,

WHEAOSCImplemented}

 0 3 Enum {0, Count, NextInstance}

get-childitem hklm:\system\currentcontrolset\services\acpi

$p = get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum
$p.count

1

get-itemproperty [–path] KeyPath [–name] ValueName

 Managing and Securing the Registry CHAPTER 12 341

 where KeyPath is the path of the key you want to examine and ValueName is an
optional parameter that specifi es a specifi c key value. Here is an example with
sample output:

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum count

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi\enum

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

PSChildName : enum

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

Count : 1

 As you can see, the output includes path, drive, and provider values as well as
the value of the property you are examining. You can fi lter the output so that you
see only the property value using Format-List, as shown in the following example:

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum `
count | format-list –property count

Count : 1

 NOTE To work with the registry on remote computers, use the Invoke-Command

cmdlet as discussed in Chapter 4, “Using Sessions, Jobs, and Remoting.” Here is an

example:

invoke-command -computername Server43, Server27, Server82 `
-scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

 Alternatively, you can establish remote sessions using the New-PSSession cmdlet

and then run individual commands against each computer automatically. Here is an

example:

$s = new-PSSession –computername Server43, Server27, Server82
invoke-command –session $s -scriptblock {get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum}

Managing Registry Keys and Values

 When you are working with the Registry provider, you have many Item and Item-
Property cmdlets available for managing registry keys and values. You’ll use these
cmdlets to create, copy, move, rename, and delete registry items.

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum count

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi\enum

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\

system\currentcontrolset\services\acpi

PSChildName : enum

PSDrive : HKLM

PSProvider : Microsoft.PowerShell.Core\Registry

Count : 1

get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum `
count | format-list –property count

Count : 1

invoke-command -computername Server43, Server27, Server82 `
-scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

$s = new-PSSession –computername Server43, Server27, Server82
invoke-command –session $s -scriptblock {get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum}

CHAPTER 12 Managing and Securing the Registry342

Creating Registry Keys and Values

You can easily add subkeys and values to the Windows registry using PowerShell. To
create keys, you use the New-Item cmdlet. To create key values, you use the New-
ItemProperty cmdlet. The basic syntax for creating a key is

new-item [–type registrykey] [–path] Path

where you can optionally specify the type of item you are creating as Registrykey
and then use Path to specify where the key should be created. When you create
a registry key, New-Item displays results that confi rm the creation process. In the
following example, you create an HKCU:\Software\Test key, and the resulting output
confi rms that the key was successfully created:

new-item -type registrykey -path hkcu:\software\test

 Hive: HKEY_CURRENT_USER\software

SKC VC Name Property

--- -- ---- --------

 0 0 test {}

NOTE To create keys and set key values on remote computers, use the Invoke-Command

cmdlet as discussed in Chapter 4. Here is an example:

invoke-command -computername Server43, Server27, Server82 `
-scriptblock { new-item hkcu:\software\test }

As long as you have the appropriate permissions to create the key in the specifi ed
location, the creation process should be successful. If the key already exists, however,
you’ll see an error stating the following: “A key at this path already exists.”

The basic syntax for creating a key value is

new-itemproperty [–path] Path [-name] Name [-type Type] [-value Value]

where Path is the path to an existing registry key, Name is the name of the value,
Type is the value type, and Value is the value to assign. Permitted value types are
listed by their reference name in Table 12-2. As the table shows, valid types include
Binary, Dword, Expandstring, Multistring, None, and String.

 When you create a key value, New-ItemProperty displays results that confi rm
the creation process. In the following example, you create a string value called Data
under the HKCU:\Software\Test key, and the resulting output confi rms that the key
value was successfully created:

new-itemproperty -path hkcu:\software\test Data –type "string" `
–value "Current"

new-item -type registrykey -path hkcu:\software\test

 Hive: HKEY_CURRENT_USER\software

SKC VC Name Property

--- -- ---- --------

 0 0 test {}

invoke-command -computername Server43, Server27, Server82 `
-scriptblock { new-item hkcu:\software\test }

new-itemproperty -path hkcu:\software\test Data –type "string" `
–value "Current"

 Managing and Securing the Registry CHAPTER 12 343

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software\test

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software

PSChildName : test

PSDrive : HKCU

PSProvider : Microsoft.PowerShell.Core\Registry

Data : Current

 As long as you have the appropriate permissions to create the key in the speci-
fi ed location, the creation process should be successful. If the key value already
exists, however, you’ll see an error stating the following: “The property already exists.”

Copying Registry Keys and Values

 You can copy registry keys using Copy-Item. The basic syntax is

copy-item SourcePath DestinationPath

 where SourcePath is the path to the registry key to copy and DestinationPath is
where you’d like to create a copy of the registry. In the following example, you copy
the HKCU:\Software\Test key (and all its contents) to HKLM:\Software\Dev:

copy-item hkcu:\software\test hklm:\software\dev

 As long as you have the appropriate permissions, you should be able to copy
registry keys. When you copy a key, Copy-ItemProperty displays an error that
indicates failure but doesn’t display any output to indicate success.

 You can copy registry values using Copy-ItemProperty. The basic syntax is

copy-itemproperty [–path] SourcePath [-destination] DestinationPath [–name]
KeyValueToCopy

 where SourcePath is the current path to the key value, DestinationPath is the new
path for the copy of the key value, and KeyValueToCopy identifi es the key value you
want to copy. In the following example, you copy the Data value from the HKCU:\
Software\Test key to the HKLM:\Software\Dev key:

copy-itemproperty -path hkcu:\software\test -destination `
hklm:\software\dev -name data

 As long as you have the appropriate permissions and the source value exists, you
should be able to copy the key value. You can use Copy-ItemProperty to copy multiple
key values. Use comma-separated values or wildcard characters as appropriate.

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software\test

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\

software

PSChildName : test

PSDrive : HKCU

PSProvider : Microsoft.PowerShell.Core\Registry

Data : Current

copy-item hkcu:\software\test hklm:\software\dev

copy-itemproperty -path hkcu:\software\test -destination `
hklm:\software\dev -name data

CHAPTER 12 Managing and Securing the Registry344

Moving Registry Keys and Values

You can move keys and their associated values using Move-Item. The basic syntax is

move-item SourcePath DestinationPath

where SourcePath is the current path to the key and DestinationPath is the new path
to the key. When you move a key, Move-Item displays an error that indicates failure
but doesn’t display any output to indicate success. In the following example, you
move the HKCU:\Software\Test key (and all its contents) to the HKCU:\Software\Test2
key:

move-item hkcu:\software\test hkcu:\software\test2

As long as you have the appropriate permissions, you should be able to move
keys. You can use Move-Item to move keys from one root to another. For example,
you can move HKCU:\Software\Test to HKLM:\Software\Test.

You can move key values using Move-ItemProperty. The basic syntax is

move-itemproperty [–path] SourcePath [-destination] DestinationPath [–name]
KeyValueToMove

where SourcePath is the current path to the key value, DestinationPath is the new
path to the key value, and KeyValueToMove identifi es the key value you want to
move. When you move a key value, Move-ItemProperty displays an error that
indicates failure but doesn’t display any output to indicate success. In the following
example, you move the Data value from the HKCU:\Software\Test key to the
HKLM:\Software\Test key:

move-itemproperty -path hkcu:\software\test -destination `
hklm:\software\test2 -name data

As long as you have the appropriate permissions and the source and destination
keys exist, you should be able to move the key value. You can use Move-ItemProperty
to move multiple key values. Use comma-separated values or wildcard characters
as appropriate.

Renaming Registry Keys and Values

To rename keys, you use the Rename-Item cmdlet. Rename-Item has the following
syntax

rename-item OriginalNamePath NewName

where OriginalNamePath is the full path to the key and NewName is the new name
for the key. In the following example, you rename Test under HKCU:\Software as
Test2:

rename-item hkcu:\software\test test2

move-item hkcu:\software\test hkcu:\software\test2

move-itemproperty -path hkcu:\software\test -destination `
hklm:\software\test2 -name data

rename-item hkcu:\software\test test2

 Managing and Securing the Registry CHAPTER 12 345

 As long as you have the appropriate permissions, you should be able to rename
keys.

 To rename key values, you use the Rename-ItemProperty cmdlet. Rename-
ItemProperty has the following syntax

rename-item [-path] OriginalNamePath [-name] CurrentName [–newname] NewName

 where OriginalNamePath is the full path to the key value and NewName is the
new name for the key value. In the following example, you rename Data under the
HKCU:\Software\Test key as EntryType:

rename-itemproperty –path hkcu:\software\test2 –name data `
–newname entrytype

 As long as you have the appropriate permissions, you should be able to rename
keys.

Deleting Registry Keys and Values

 You can delete registry keys using the Remove-Item cmdlet. Remove-Item has the
following syntax

remove-item NamePath [-Force]

 where NamePath is the full path to the registry key that you want to remove, and
–Force is an optional parameter to force the removal of the key. In the following
example, you delete the HKCU:\Software\Test2 key (and all its contents):

remove-item hkcu:\software\test2

 As long as you have the appropriate permissions, you should be able to remove
registry keys.

 You can delete key values using the Remove-ItemProperty cmdlet. Remove-
ItemProperty has the following syntax

remove-itemproperty [-Path] KeyPath [-Name] ValueName [-Force]

 where KeyPath is the full path to the registry key that contains the value that you
want to remove, ValueName is the name of the value to remove, and –Force is an
optional parameter to force the removal of the key value. In the following example,
you delete the Data value for the HKCU:\Software\Test key:

remove-itemproperty –path hkcu:\software\test –name data

 As long as you have the appropriate permissions, you should be able to remove
key values.

rename-itemproperty –path hkcu:\software\test2 –name data `
–newname entrytype

remove-item hkcu:\software\test2

remove-itemproperty –path hkcu:\software\test –name data

CHAPTER 12 Managing and Securing the Registry346

Comparing Registry Keys

You can compare registry entries and values between and among computers or
between two different keys on the same system. Performing registry comparisons is
useful in the following situations:

 When you are trying to troubleshoot service and application confi guration
issues.

At such times, it is useful to compare the registry confi gurations between two
different systems. Ideally, these systems include one registry that appears to
be confi gured properly and one that you suspect is misconfi gured. You can
then perform a comparison of the confi guration areas that you suspect are
causing problems.

 When you want to ensure that an application or service is confi gured the
same way on multiple systems.

Here you use one system as the basis for testing the other system confi gura-
tions. Ideally, the basis system is confi gured exactly as expected before you
start comparing its confi guration with other systems.

 To see how you can compare registry values across computers, consider the fol-
lowing example and sample output:

$c1 = "techpc18"
$c2 = "engpc25"

$p = invoke-command -computername $c1 -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $c2 -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

if ($p = $h) {write-host $True} else {
write-host "Computer: $c1"
write-host $p

write-host "Computer: $c2"
write-host $h}

True

 When you run these commands at an elevated administrator PowerShell prompt
and the remote computers are confi gured for remoting, you get a comparison of
the specifi ed keys on both computers. If the keys have the same values, PowerShell
writes True to the output as shown. Otherwise, PowerShell writes the values associated
with each key on each computer, allowing you to see where there are differences.

$c1 = "techpc18"
$c2 = "engpc25"

$p = invoke-command -computername $c1 -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $c2 -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

if ($p = $h) {write-host $True} else {
write-host "Computer: $c1"
write-host $p

write-host "Computer: $c2"
write-host $h}

True

 Managing and Securing the Registry CHAPTER 12 347

 You can easily extend this comparison technique so that you can compare the
values on a computer you know is confi gured correctly with multiple computers in
the enterprise that you want to check. An example and sample output follow:

$clist = "techpc18", "techpc25", "techpc36"
$src = "engpc25"

$ps = invoke-command -computername $clist -scriptblock { `
get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $src -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

$index = 0

foreach ($p in $ps) {

if ($p = $h) {write-host $clist[$index] "same as $src" } else {
write-host "Computer:" $clist[$index]
write-host $p

write-host "Computer: $src"
write-host $h

$index++}
}

techpc18 same as engpc25

techpc25 same as engpc25

techpc36 same as engpc25

 Here, you check the registry on multiple target computers and compare key
values with a source computer. If a target computer has different values for the key
compared, you list the target computer’s values followed by the source computer’s
values. This allows you to see where there are differences.

Viewing and Managing Registry Security Settings

 As an administrator, you’ll sometimes need to view and manage security settings in
the registry. In PowerShell, these tasks are accomplished using Get-Acl and Set-Acl.
The syntax for these commands is as follows:

 Get-Acl Gets objects that represent the security descriptor of registry keys.
Use –Audit to get the audit data for the security descriptor from the access
control list.

$clist = "techpc18", "techpc25", "techpc36"
$src = "engpc25"

$ps = invoke-command -computername $clist -scriptblock { `
get-itemproperty hklm:\system\currentcontrolset\services\acpi\enum }

$h = invoke-command -computername $src -scriptblock { get-itemproperty `
hklm:\system\currentcontrolset\services\acpi\enum }

$index = 0

foreach ($p in $ps) {

if ($p = $h) {write-host $clist[$index] "same as $src" } else {
write-host "Computer:" $clist[$index]
write-host $p

write-host "Computer: $src"
write-host $h

$index++}
}

techpc18 same as engpc25

techpc25 same as engpc25

techpc36 same as engpc25

CHAPTER 12 Managing and Securing the Registry348

Get-Acl [-Path] KeyPaths {AddtlParams}

AddtlParams=
[-Audit] [-Exclude KeysToExclude] [-Include KeysToInclude]

 Set-Acl Changes the security descriptor of registry keys. Use –Aclobject to
specify the desired security settings.

Set-Acl [-Path] KeyPaths [-Aclobject] Security {AddtlParams}

AddtlParams=
[-Exclude KeysToExclude] [-Include KeysToInclude]

Whenever you are working with registry keys, you might want to view or modify
the security descriptor. Use Get-Acl with the –Path parameter to specify the path to
resources you want to work with. You can use wildcard characters in the path, and
you can also include or exclude keys using the –Include and –Exclude parameters.

Getting and Setting Registry Security Descriptors

Get-Acl returns a separate object containing the security information for each
matching key. By default, Get-Acl displays the path to the resource, the owner of the
resource, and a list of the access control entries on the resource. The access control
list is controlled by the resource owner. To get additional information, including the
security group of the owner, a list of auditing entries, and the full security descriptor
as an SDDL (Security Descriptor Defi nition Language) string, format the output as a
list as shown in the following example and sample output:

get-acl hklm:\software\test | format-list

Path:Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\test

Owner : BUILTIN\Administrators

Group : ENGPC18\None

Access : BUILTIN\Users Allow ReadKey

 BUILTIN\Users Allow -2147483648

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 CREATOR OWNER Allow 268435456

Audit :

Sddl : O:BAG:S-1-5-21-3603280705-3559929044-3306537903-

513D:AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)

(A;ID;KA;;;SY)(A;CIIOID;GA;;;SY)(A;CIIOID;GA;;;CO)

Get-Acl [-Path] KeyPaths {AddtlParams}

AddtlParams=
[-Audit] [-Exclude KeysToExclude] [-Include KeysToInclude]

Set-Acl [-Path] KeyPaths [-Aclobject] Security {AddtlParams}y

AddtlParams=
[-Exclude KeysToExclude] [-Include KeysToInclude]

get-acl hklm:\software\test | format-list

Path:Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\test

Owner : BUILTIN\Administrators

Group : ENGPC18\None

Access : BUILTIN\Users Allow ReadKey

 BUILTIN\Users Allow -2147483648

 BUILTIN\Administrators Allow FullControl

 BUILTIN\Administrators Allow 268435456

 NT AUTHORITY\SYSTEM Allow FullControl

 NT AUTHORITY\SYSTEM Allow 268435456

 CREATOR OWNER Allow 268435456

Audit :

Sddl : O:BAG:S-1-5-21-3603280705-3559929044-3306537903-

513D:AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)

(A;ID;KA;;;SY)(A;CIIOID;GA;;;SY)(A;CIIOID;GA;;;CO)

 Managing and Securing the Registry CHAPTER 12 349

 NOTE You can view and manage registry security on remote computers using any of

the remoting techniques discussed in Chapter 4. Here is an example:

invoke-command -computername Server16, Server12, Server18 `
-scriptblock { get-acl hklm:\software\test | format-list }

 Here, Get-Acl returns a RegistrySecurity object representing the security descriptor
of the HKLM:\Software\Test key. The result is then sent to the Format-List cmdlet. You
can work with any properties of security objects separately, including the following:

 Owner Shows the owner of the resource

 Group Shows the primary group the owner is a member of

 Access Shows the access control rules on the resource

 Audit Shows the auditing rules on the resource

 Sddl Shows the full security descriptor as an SDDL string

 NOTE RegistrySecurity objects have additional properties that aren’t displayed as part

of the standard output. To see these properties, send the output to Format-List *. You’ll

then see the following note and script properties: PSPath (the PowerShell path to the

resource), PSParentPath (the PowerShell path to the parent resource), PSChildName (the

name of the resource), PSDrive (the PowerShell drive on which the resource is located),

AccessToString (an alternate representation of the access rules on the resource), and

AuditToString (an alternate representation of the audit rules on the resource).

 You can use the objects that Get-Acl returns to set the security descriptors on
registry keys. To do this, open an elevated administrator PowerShell prompt, obtain
a single security descriptor object for a registry key that has the security settings
you want to use, and then use the security descriptor object to establish the desired
security settings for another registry key. An example and sample output follow:

set-acl –path hkcu:\software\dev -aclobject (get-acl hklm:\software\test)

 Here you use the security descriptor on HKLM:\Software\Test to set the security
descriptor for HKCU:\Software\Dev.

 You can easily extend this technique. In this example, you use the security
descriptor on HKLM:\Software\Test to set the security descriptor for subkeys directly
under the HKCU:\Software\Dev key:

$secd = get-acl hklm:\software\test
set-acl –path hkcu:\software\dev* -aclobject $secd

 To include keys in subpaths, you need to use Get-ChildItem to obtain reference
objects for all the keys you want to work with. Here is an example:

$s = get-acl hklm:\software\test
gci hkcu:\software\dev -recurse -force | set-acl -aclobject $s

invoke-command -computername Server16, Server12, Server18 `
-scriptblock { get-acl hklm:\software\test | format-list }

set-acl –path hkcu:\software\dev -aclobject (get-acl hklm:\software\test)

$secd = get-acl hklm:\software\test
set-acl –path hkcu:\software\dev* -aclobject $secd

$s = get-acl hklm:\software\test
gci hkcu:\software\dev -recurse -force | set-acl -aclobject $s

CHAPTER 12 Managing and Securing the Registry350

Here, gci is an alias for Get-ChildItem. You obtain the security descriptor for
HKLM:\Software\Test. Next you get a reference to all subpaths of HKCU:\Software\
Dev. Finally, you use the security descriptor on HKLM:\Software\Test to set the
security descriptor for these subkeys.

Working with Registry Access Rules

To create your own security descriptors, you need to work with access control rules.
The Access property of security objects is defi ned as a collection of authorization
rules. With registry keys, these rules have the following object type:

 System.Security.AccessControl.RegistryAccessRule

 One way to view the individual access control objects that apply to a registry key
is shown in this example and sample output:

$s = get-acl hklm:\software\test
$s.access

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : ENGPC72\Bubba

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : NT AUTHORITY\SYSTEM

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

 Here you get the RegistrySecurity object for the HKLM:\Software\Test key and
then display the contents of its Access property. Although each value listed is an
access rule object, you cannot work with each access rule object separately. Note
the following in the output:

 RegistryRights Shows the registry rights being applied

 AccessControlType Shows the access control type as Allow or Deny

 IdentityReference Shows the user or group to which the rule applies

$s = get-acl hklm:\software\test
$s.access

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : ENGPC72\Bubba

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : NT AUTHORITY\SYSTEM

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

RegistryRights : FullControl

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

 Managing and Securing the Registry CHAPTER 12 351

 IsInherited Specifi es whether the access rule is inherited

 InheritanceFlags Shows the way inheritance is being applied

 PropagationFlags Specifi es whether the access rule will be inherited

 Another way to work with each access rule object separately is to use a ForEach
loop as shown in this example:

$s = get-acl hklm:\software\test

foreach($a in $s.access) {

 #work with each access control object

 if ($a.identityreference -like "*administrator*") {$a | format-list *}
}

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

 Here, you examine each access rule object separately, which allows you to take
action on specifi c access rules. In this example, you look for access rules that apply
to administrators.

Confi guring Registry Permissions

 You can assign two types of access permissions to registry keys: basic and special.
These permissions grant or deny access to users and groups.

 The basic permissions you can assign to registry keys are shown in Table 12-3.
The basic permissions are made up of multiple special permissions. Note the rule
fl ag for each permission, because this is the value you must reference when creating
an access rule.

 TABLE 12-3 Basic Registry Permissions

 PERMISSION DESCRIPTION RULE FLAG

 Full
 Control

This permission permits reading, writing, changing,
and deleting registry keys and values.

FullControl

 Read This permission permits reading registry keys and
their values.

ReadKey,
 ExecuteKey

 Write This permission permits reading and writing registry
keys and their values.

WriteKey

$s = get-acl hklm:\software\test

foreach($a in $s.access) {

#work with each access control object

if ($a.identityreference -like "*administrator*") {$a | format-list *}
}

RegistryRights : FullControl

AccessControlType : Allow

IdentityReference : BUILTIN\Administrators

IsInherited : True

InheritanceFlags : ContainerInherit, ObjectInherit

PropagationFlags : None

 CHAPTER 12 Managing and Securing the Registry352

When you are configuring basic permissions for users and groups, you can specify
the access control type as either Allowed or Denied. If a user or group should be
granted an access permission, you allow the permission. If a user or group should
be denied an access permission, you deny the permission.

You configure basic permissions for resources using access rules. Access rules
contain collections of arrays that define:

 The user or group to which the rule applies.

 The access permission that applies.

 The Allow or Deny status.

This means regardless of whether you are adding or modifying rules, the basic
syntax for an individual access rule is

"UserOrGroupName", "ApplicablePermission", "ControlType"

where UserOrGroupName is the name of the user or group to which the access
rule applies, ApplicablePermission is the basic permission you are applying, and
ControlType specifies the Allow or Deny status. User and group names are specified
in COMPUTER\Name or DOMAIN\Name format. In the following example, you
grant full control to DeploymentTesters:

"DeploymentTesters", "FullControl", "Allow"

The expanded syntax for an access rule is

"UserOrGroupName", "ApplicablePermission", "InheritanceFlag",
"PropagationFlag", "ControlType"

where UserOrGroupName is the name of the user or group to which the access rule
applies, ApplicablePermission is the basic permission you are applying, Inheritance-
Flag controls inheritance, PropagationFlag controls propagation of inherited rules,
and ControlType specifies the type of access control. In the following example, you
grant full control to DeploymentTesters and apply inheritance to the key and all its
subkeys:

"DeploymentTesters", "FullControl", "ContainerInherit", "None", "Allow"

With the inheritance flag, you can specify one of the following flag values:

 None The access rule is not inherited by subkeys of the current key.

 ContainerInherit The access rule is inherited by child container objects.

 ObjectInherit The access rule is inherited by child leaf objects.

Because all registry keys are containers, the only inheritance flag that is mean-
ingful for registry keys is the ContainerInherit flag for InheritanceFlags. If this flag is
not used, the propagation flags are ignored, and only the key you are working with
is affected. If you use the ContainerInherit flag, the rule is propagated according to
the propagation flags.

 Managing and Securing the Registry CHAPTER 12 353

 With the propagation fl ag, you can specify the following fl ag values:

 None The access rule is propagated without modifi cation. This means the
rule applies to subkeys, subkeys with child keys, and subkeys of child keys.

 InheritOnly The access rule is propagated to container and leaf child
 objects. This means the rule applies to subkeys with child keys and subkeys
of child keys; the rule does not apply to subkeys of the key.

 NoPropagateInherit The access rule applies to its child objects. This
means the rule applies to subkeys of the key and subkeys with child keys but
not to subkeys of child keys.

 NoPropagateInherit, InheritOnly The access rule applies to containers.
This means the rule applies to subkeys with child keys but not to subkeys of
child keys or to subkeys of the key.

 You add access rules to a resource using either the SetAccessRule() method or
the AddAccessRule() method of the access control object. You remove access rules
from a resource using the RemoveAccessRule() method of the access control object.
As discussed previously, access rules are defi ned as having the System.Security
. AccessControl.RegistryAccessRule type.

 The easiest way to add and remove access rules is to follow these steps:

 1. Get an access control object. This object can be the one that applies to the
registry key you want to work with or one that applies to a registry key that
has the closest access control permissions to those you want to use.

 2. Create one or more instances of the System.Security.AccessControl
.RegistryAccessRule type, and store the desired permissions in these object
instances.

 3. Call AddAccessRule() or RemoveAccessRule() to add or remove access rules
as necessary. These methods operate on the access control object you
 retrieved in the fi rst step.

 4. To apply the changes you’ve made to an actual registry key, you must apply
the access control object to a specifi ed resource.

 Consider the following example:

$acl = get-acl hklm:\software\test
$perm = "cpandl\deploymenttesters","fullcontrol","allow"
$r = new-object system.security.accesscontrol.registryaccessrule $perm
$acl.addaccessrule($r)
$acl | set-acl hkcu:\software\dev

 Here, you get the access control object on HKLM:\Software\Test. You store the
values for an access rule in a variable called $perm and then create a new instance
of the RegistryAccessRule type for this access rule. To add the permission to the
access control object you retrieved previously, you call its AddAccessRule() method.
Although you could have created additional permissions and added or removed
these, you didn’t in this example. Finally, you applied the access control object to a
specifi c resource using Set-Acl.

$acl = get-acl hklm:\software\test
$perm = "cpandl\deploymenttesters","fullcontrol","allow"
$r = new-object system.security.accesscontrol.registryaccessrule $perm
$acl.addaccessrule($r)
$acl | set-acl hkcu:\software\dev

CHAPTER 12 Managing and Securing the Registry354

You can easily extend the previous examples to apply to multiple registry keys as
shown in the following example:

$acl = get-acl hklm:\software\test
$perm = "cpandl\devtesters","fullcontrol","allow"
$r = new-object system.security.accesscontrol.registryaccessrule $perm
$acl.addaccessrule($r)

$resc = gci hkcu:\software\test -force
foreach($f in $resc) {

 write-host $f.pspath
 $acl | set-acl $f.pspath
}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Here, you apply an access control list with a modifi ed permission set to every
subkey of HKCU:\Software\Test. In the output, you list the names of the keys you’ve
modifi ed. This helps you keep track of the changes.

The special permissions you can assign to registry keys are shown in Table 12-4.
As with basic permissions, note the rule fl ag for each permission, because this is the
value you must reference when creating an access rule.

 TABLE 12-4 Special Permissions

 PERMISSION DESCRIPTION RULE FLAG

 Query Values Allows the user or group to read the values
within a key.

QueryValues

 Set Value Allows the user or group to set the values
within a key.

SetValue

 Create
 Subkey

Allows the user or group to create subkeys
under the selected key.

CreateSubKey

 Enumerate
Subkeys

Allows the user or group to list the subkeys
under a key.

EnumerateSubKeys

 Notify Allows the user or group to get notifi cations
for changes that occur in a key.

Notify

 Create Link Allows the user or group to create links from
one key to another key.

CreateLink

$acl = get-acl hklm:\software\test
$perm = "cpandl\devtesters","fullcontrol","allow"
$r = new-object system.security.accesscontrol.registryaccessrule $perm
$acl.addaccessrule($r)

$resc = gci hkcu:\software\test -force
foreach($f in $resc) {

 write-host $f.pspath
 $acl | set-acl $f.pspath
}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

 Managing and Securing the Registry CHAPTER 12 355

TABLE 12-4 Special Permissions

PERMISSION DESCRIPTION RULE FLAG

Delete Allows the user or group to delete the key,
subkeys, and values associated with the key.
Delete permission must apply on the key and
on all the key’s subkeys in order for a user or
group to delete a registry key.

Delete

Write DAC Allows the user or group to change the key’s
security permissions.

ChangePermissions

Take
 Ownership

Allows the user or group to modify owner-
ship of a key.

TakeOwnership

Read Control Allows the user or group to read the key’s
security permissions.

ReadPermissions

Table 12-5 shows how special permissions are combined to make the basic per-
missions for registry keys.

TABLE 12-5 Combining Special Permissions

PERMISSION FULL CONTROL READ WRITE

Query Values X X

Set Value X X

Create Subkey X X

Enumerate Subkeys X X

Notify X X

Create Link X

Delete X

Write DAC X

Write Owner X

Read Control X X X

You configure special permissions for registry keys in the same way as basic
permissions. You add access rules to a resource using either the SetAccessRule()
method or the AddAccessRule() method of the access control object. You remove
access rules from a resource using the RemoveAccessRule() method of the access
control object.

CHAPTER 12 Managing and Securing the Registry356

Consider the following example:

$acl = get-acl hklm:\software\test
$p1 = "cpandl\dev","queryvalues","allow"
$r1 = new-object system.security.accesscontrol.registryaccessrule $p1
$acl.addaccessrule($r1)

$p2 = "cpandl\dev","enumeratesubkeys","allow"
$r2 = new-object system.security.accesscontrol.registryaccessrule $p2
$acl.addaccessrule($r2)

$acl | set-acl hklm:\software\test

Here, you get the access control object on the HKLM:\Software\Test key. This
key must exist for the example to work. After you defi ne an access rule and store
the related values in $p1, you create a new instance of the RegistryAccessRule type
and add the permission to the access control object by calling the AddAccessRule()
method. After you defi ne a second access rule and store the related values in $p2,
you create a new instance of the RegistryAccessRule type and add the permission to
the access control object by calling the AddAccessRule() method. Finally, you apply
the access control object to a specifi c resource.

Taking Ownership of Registry Keys

You can take ownership using a registry key using the SetOwner() method of the
access control object. The easiest way to take ownership is to complete the follow-
ing steps:

 1. Get an access control object for the registry you want to work with.

 2. Get the IdentityReference for the user or group that will take ownership. This
user or group must already have permission on the registry key.

 3. Call SetOwner to specify that you want the user or group to be the owner.

 4. Apply the changes you’ve made to the registry key.

 Consider the following example:

$acl = get-acl hklm:\software\test
$found = $false
foreach($rule in $acl.access) {
 if ($rule.identityreference -like "*administrators*") {
 $global:ref = $rule.identityreference; $found = $true; break}
}

if ($found) {
 $acl.setowner($ref)
 $acl | set-acl hklm:\software\test
}

$acl = get-acl hklm:\software\test
$p1 = "cpandl\dev","queryvalues","allow"
$r1 = new-object system.security.accesscontrol.registryaccessrule $p1
$acl.addaccessrule($r1)

$p2 = "cpandl\dev","enumeratesubkeys","allow"
$r2 = new-object system.security.accesscontrol.registryaccessrule $p2
$acl.addaccessrule($r2)

$acl | set-acl hklm:\software\test

$acl = get-acl hklm:\software\test
$found = $false
foreach($rule in $acl.access) {
 if ($rule.identityreference -like "*administrators*") {
 $global:ref = $rule.identityreference; $found = $true; break}
}

if ($found) {
 $acl.setowner($ref)
 $acl | set-acl hklm:\software\test
}

 Managing and Securing the Registry CHAPTER 12 357

Here, you get the access control object on HKLM:\Software\Test. You then exam-
ine each access rule on this object, looking for the one that applies to the group you
want to work with. If you find a match, you set $ref to the IdentityReference for this
group, change $found to $true, and then break out of the ForEach loop. After you
break out of the loop, you check to see if $found is True. If it is, you set the owner-
ship permission on the access control object you retrieved previously and then
apply the access control object to HKLM:\Software\Test using Set-Acl.

Auditing the Registry

Access to the registry can be audited, as can access to other areas of the operating
system. Auditing allows you to track which users access the registry and what
they’re doing. All the permissions listed previously in Tables 12-1 and 12-2 can be
audited. However, you usually limit what you audit to only the essentials to reduce
the amount of data that is written to the security logs and to reduce the resources
used to track registry usage.

Before you can enable auditing of the registry, you must enable the auditing
function on the computer you are working with. You can do this either through the
server’s local policy or through the appropriate Group Policy object. The policy that
controls auditing is Computer Configuration\Windows Settings\Security Settings
\Local Policies\Audit Policy.

After auditing is enabled for a computer, you can configure how you want
auditing to work for the registry. This means configuring auditing for each key you
want to track. Thanks to inheritance, this doesn’t mean you have to go through
every key in the registry and enable auditing for it. Instead, you can select a root
key or any subkey to designate the start of the branch for which you want to track
access, and then ensure the auditing settings are inherited for all subkeys below it.
(Inheritance is the default setting.)

You can set auditing policies for registry keys using auditing rules. Auditing rules
contain collections of arrays that define the following:

 The user or group to which the rule applies

 The permission usage that is audited

 The inheritance flag specifying whether the audit rule applies to subkeys of
the current key

 The propagation flag specifying how an inherited audit rule is propagated to
subkeys of the current key

 The type of auditing

 CHAPTER 12 Managing and Securing the Registry358

This means regardless of whether you are adding or modifying rules, the basic
syntax for an individual audit rule is

"UserOrGroupName", "PermissionAudited", "InheritanceFlag",
"PropagationFlag", "AuditType"

where UserOrGroupName is the name of the user or group to which the audit rule
applies, PermissionAudited is the basic or special permission you are tracking,
InheritanceFlag controls inheritance, PropagationFlag controls propagation of
inherited rules, and AuditType specifies the type of auditing.

With the inheritance flag, you can specify one of the following flag values:

 None The audit rule is not inherited by subkeys of the current key.

 ContainerInherit The audit rule is inherited by child container objects.

 ObjectInherit The audit rule is inherited by child leaf objects.

Because all registry keys are containers, the only inheritance flag that is mean-
ingful for registry keys is the ContainerInherit flag for InheritanceFlags. If this flag is
not used, the propagation flags are ignored, and only the key you are working with
is affected. If you use the ContainerInherit flag, the rule is propagated according to
the propagation flags.

With the propagation flag, you can specify the following flag values:

 None The audit rule is propagated without modification. This means the
rule applies to subkeys, subkeys with child keys, and subkeys of child keys.

 InheritOnly The audit rule is propagated to container and leaf child objects.
This means the rule applies to subkeys with child keys and subkeys of child
keys; the rule does not apply to subkeys of the key.

 NoPropagateInherit The audit rule applies to its child objects. This means
the rule applies to subkeys of the key and subkeys with child keys but not to
subkeys of child keys.

 NoPropagateInherit, InheritOnly The audit rule applies to containers.
This means the rule applies to subkeys with child keys but not to subkeys of
child keys or to subkeys of the key.

With audit type, use Success to track successful use of a specified permission,
Failure to track failed use of a specified permission, and None to turn off auditing of
the specified permission. Use Both to track success and failure.

As with security permissions, user and group names are specified in COMPUTER
\Name or DOMAIN\Name format. In the following example, you track users in the

 Managing and Securing the Registry CHAPTER 12 359

CPANDL domain who are trying to query key values but fail to do so because they
don’t have suffi cient access permissions:

"CPANDL\USERS", "QueryValues", "ContainerInherit", "None", "Failure"

 You add audit rules to a resource using either the SetAuditRule() method or the
AddAuditRule() method of the access control object. You remove audit rules from
a resource using the RemoveAuditRule() method of the access control object. Audit
rules are defi ned as having the System.Security.AuditControl.RegistryAuditRule
type.

 The easiest way to add and remove audit rules is to complete these steps:

 1. Get an access control object. This object can be the one that applies to the
registry key you want to work with or one that applies to a registry key that
has the closest audit control permissions to those you want to use.

 2. Create one or more instances of the System.Security.AuditControl
.Registry AuditRule type, and store the desired auditing settings in these
object instances.

 3. Call AddAuditRule() or RemoveAuditRule() to add or remove audit rules as
necessary. These methods operate on the access control object you retrieved
in the fi rst step.

 4. Apply the changes you’ve made to an actual resource.

 Consider the following example:

$acl = get-acl hklm:\software\test
$audit = "cpandl\users","queryvalues","containerinherit","none","failure"
$r = new-object system.security.accesscontrol.registryauditrule $audit
$acl.addauditrule($r)
$acl | set-acl hklm:\software\test

 Here, you get the access control object on HKLM:\Software\Test. You store the
values for an audit rule in a variable called $audit, and then you create a new instance
of the RegistryAuditRule type with this auditing rule. To add the auditing setting
to the access control object you retrieved previously, you call its AddAuditRule()
method. Although you could have created additional auditing rules and added or
removed these, you didn’t in this example. Finally, you applied the access control
object to a registry key using Set-Acl.

$acl = get-acl hklm:\software\test
$audit = "cpandl\users","queryvalues","containerinherit","none","failure"
$r = new-object system.security.accesscontrol.registryauditrule $audit
$acl.addauditrule($r)
$acl | set-acl hklm:\software\test

CHAPTER 12 Managing and Securing the Registry360

You can easily extend the previous examples to apply to multiple registry keys as
shown in the following example:

$acl = get-acl hklm:\software\test
$audit = "cpandl\users","queryvalues","containerinherit","none","failure"
$r = new-object system.security.accesscontrol.registryauditrule $audit
$acl.addauditrule($r)

$resc = gci hkcu:\software\test -recurse -force
foreach($f in $resc) {

 write-host $f.pspath
 $acl | set-acl $f.pspath
}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

Here, you apply an auditing rule to every subkey of HKCU:\Software\Test. In the
output, you list the names of the registry keys you’ve modifi ed. This helps you keep
track of the changes.

$acl = get-acl hklm:\software\test
$audit = "cpandl\users","queryvalues","containerinherit","none","failure"
$r = new-object system.security.accesscontrol.registryauditrule $audit
$acl.addauditrule($r)

$resc = gci hkcu:\software\test -recurse -force
foreach($f in $resc) {

 write-host $f.pspath
 $acl | set-acl $f.pspath
}

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Dt\IO

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Queue

Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER\software\test\Stats

361

CHAP TER 13

Monitoring and Optimizing
Windows Systems

Managing Windows Events and Logs 361

Managing System Services 375

Managing Computers 395

Creating and Using System Restore Checkpoints 403

Windows PowerShell can help you to identify and track system problems,
monitor applications and services, and maintain system security. When

systems slow down, behave erratically, or experience other problems, you might
want to look to the event logs to identify the potential source of the problem.
Once you’ve identified problem sources or issues, you can perform maintenance
or preventative tasks to resolve or eliminate them. Using performance monitoring,
you can watch for adverse conditions and take appropriate action to resolve them.

Managing Windows Events and Logs

In Windows, an event is any significant occurrence in the operating system that
requires users or administrators to be notified. Events are recorded in the Windows
event logs and provide important historical information to help you monitor
 systems, maintain system security, solve problems, and perform diagnostics. It’s
not just important to sift regularly through the information collected in these
logs, it is essential. Administrators should closely monitor the event logs of every
 business server and ensure that workstations are configured to track important
system events. On servers, you want to ensure that systems are secure, that appli-
cations and services are operating normally, and that the server isn’t experiencing
errors that could hamper performance. On workstations, you want to ensure that
the events you need to maintain systems and resolve problems are being logged
and that the logs are accessible to you as necessary.

 CHAPTER 13 Monitoring and Optimizing Windows Systems362

Working with Event Logs

The Windows service that manages event logging is called the Windows Event Log
service. When this service is started, Windows logs important information. The logs
available on a system depend on the system’s role and the services installed. Two
general types of log files are used:

 Windows Logs Logs that the operating system uses to record general sys-
tem events related to applications, security, setup, and system components

 Applications and Services Logs Logs that specific applications and
 services use to record application-specific or service-specific events

Logs you might see include the following:

 Application This log records significant incidents associated with specific
applications. For example, Microsoft Exchange Server logs events related to
mail exchange, including events for the information store, mailboxes, and
service states. By default, this log is stored in %SystemRoot%\System32\
Winevt\Logs\Application.evtx.

 DFS Replication On domain controllers using DFS replication, this log
records file replication activities on the system, including events for service
status and control, scanning data in system volumes, and managing replica-
tion sets. By default, this log is stored in %SystemRoot%\System32\Winevt\
Logs\DFS Replication.Evtx.

 Directory Service On domain controllers, this log records incidents from
Active Directory Domain Services (AD DS), including events related to direc-
tory startup, global catalogs, and integrity checking. By default, this log is
stored in %SystemRoot%\System32\Winevt\Logs\Directory Service.Evtx.

 DNS Server On Domain Name System (DNS) servers, this log records DNS
queries, responses, and other DNS activities. By default, this log is stored in
%SystemRoot%\System32\Winevt\Logs\DNS Server.Evtx.

 File Replication Service This log records file replication activities on the
system. By default, this log is stored in %SystemRoot%\System32\Winevt\
Logs\File Replication Service.Evtx.

 Forwarded Events When event forwarding is configured, this log records
forwarded events from other servers. The default location is %SystemRoot%\
System32\Winevt\Logs\FordwardedEvents.Evtx.

 Hardware Events When hardware subsystem event reporting is config-
ured, this log records hardware events reported to the operating system.
The default location is %SystemRoot%\System32\Winevt\Logs\Hardware-
Event.Evtx.

 Microsoft\Windows A group of logs that track events related to specific
Windows services and features. Logs are organized by component type and
event category.

 Monitoring and Optimizing Windows Systems CHAPTER 13 363

 Security This log records events related to security, such as logon/
logoff, privilege use, and resource access. By default, this log is stored in
% SystemRoot%\System32\Winevt\Logs\Security.Evtx.

TIP To gain access to security logs, users must be granted the user right named

Manage Auditing And Security Log. By default, members of the administrators

group have this user right. You can learn more about assigning user rights in

the “Configuring User Rights Policies” section in Chapter 10, “Creating User and

Group Accounts,” of the Windows Server 2008 Administrator’s Pocket Consultant

(Microsoft Press, 2008).

 Setup This log records events logged by the operating system or
its components during setup and installation. The default location is
% SystemRoot%\System32\Winevt\Logs\Setup.Evtx.

 System This log records events from the operating system or its compo-
nents, such as the failure of a service to start, driver initialization, system-
wide messages, and other messages that relate to the system. By default, this
log is stored in %SystemRoot%\System32\Winevt\Logs\System.Evtx.

 Windows PowerShell This log records activities related to the use of
 Windows PowerShell. The default location is %SystemRoot%\System32\
Winevt\Logs\Windows PowerShell.Evtx.

Events range in severity from informational messages to general warnings to
serious incidents such as critical errors and failures. The category of an event is
 indicated by its event level. Event levels include:

 Information Indicates an informational event has occurred, which is
 generally related to a successful action.

 Warning Indicates a general warning. Warnings are often useful in
 preventing future system problems.

 Error Indicates a critical error, such as a DHCPv6 address configuration
problem.

 Critical Indicates a critical error, such as the computer rebooting after a
power loss or crash.

 Audit Success Indicates the successful execution of an action that you are
tracking through auditing, such as privilege use.

 Audit Failure Indicates the failed execution of an action that you are
 tracking through auditing, such as failure to log on.

TIP Of the many event types, the two you’ll want to monitor closely are warnings

and errors. Whenever these types of events occur and you’re unsure of the reason, you

should take a closer look to determine whether you need to take further action.

CHAPTER 13 Monitoring and Optimizing Windows Systems364

In addition to having a level, each event has the following common properties
associated with it:

 Computer Identifi es the computer that caused the event to occur.

 Data Any data or error code output by the event.

 Date and Time Specifi es the date and time the event occurred.

 Description Provides a detailed description of the event and can include
details about where to fi nd more information with which to resolve or handle
an issue. This fi eld is available when you double-click a log entry in Event
Viewer.

 Event ID Details the specifi c event that occurred with a numeric identifi er.
Event IDs are generated by the event source and used to uniquely identify
the event.

 Log Name Specifi es the name of the log in which the event was entered.

 Source Identifi es the source of the event, such as an application, service, or
system component. The event source is useful for pinpointing the cause of
an event.

 Task Category Specifi es the category of the event, which is sometimes
used to further describe the related action. Each event source has its own
event categories. For example, with the security source, categories include
logon/logoff, privilege use, policy change, and account management.

 User Identifi es the user account that caused the event to be generated.
Users can include special identities, such as Local Service, Network Service,
and Anonymous Logon, as well as actual user accounts. The user account can
also be listed as N/A to indicate that a user account is not applicable in this
particular situation.

The GUI tool you use to manage events is Event Viewer. You can start this tool
by typing eventvwr at the PowerShell prompt for the local computer or eventvwr

ComputerName, where ComputerName is the name of the remote computer
whose events you want to examine. As with most GUI tools, Event Viewer is easy to
use, and you might want to continue to use it for certain management tasks.

PowerShell provides several commands for working with the event logs, includ-
ing the following:

 Get-WinEvent Gets events from event logs and event tracing log fi les on
the local computer or specifi ed remote computers. It is supported only on
Windows Vista, Windows Server 2008, and later versions of Windows.

Get-WinEvent [-ListLog] LogNames {BasicParams}
Get-WinEvent [-ListProvider] ProviderNames {BasicParams}

Get-WinEvent [-Path] LogFilePath {BasicParams} {AddtlParams}
Get-WinEvent [-LogName] LogName {BasicParams} {AddtlParams}
Get-WinEvent [-ProviderName] Name {BasicParams} {AddtlParams}
Get-WinEvent –FilterHashTable Values {BasicParams} {AddtlParams}

Get-WinEvent [-ListLog] LogNames {BasicParams}
Get-WinEvent [-ListProvider] ProviderNames {BasicParams}

Get-WinEvent [-Path] LogFilePath {BasicParams} {AddtlParams}
Get-WinEvent [-LogName] LogName {BasicParams} {AddtlParams}
Get-WinEvent [-ProviderName] Name {BasicParams} {AddtlParams}
Get-WinEvent –FilterHashTable Values {BasicParams} {AddtlParams}

 Monitoring and Optimizing Windows Systems CHAPTER 13 365

{BasicParams}
[-ComputerName ComputerName] [-Credential CredentialObject]

{AddtlParams}
[-FilterXPath XPathQuery] [-Oldest] [-MaxEvents NumEvents]

 REAL WORLD XPath queries help you create custom or fi ltered views of event

logs, allowing you to quickly and easily fi nd events that match specifi c criteria.

Because XPath queries can be used on any compatible system, you can re-create

custom and fi ltered views on other computers simply by running the query on a

target computer.

 Clear-EventLog Deletes all entries from specifi ed event logs on the local
computer or specifi ed remote computers.

Clear-EventLog [[-ComputerName] ComputerNames] [-LogName] LogNames

 Get-EventLog Gets a list of the event logs or the events in a specifi ed
event log on local or remote computers.

Get-EventLog [-List] [-ComputerName ComputerNames] [-AsString]

Get-EventLog [-ComputerName ComputerNames] [-LogName] LogName
[-AsBaseObject] [-After DateTime] [-Before DateTime]
[-EntryType EntryTypes] [-Index IndexValues] [[-InstanceID] ID]
[-Message Message] [-Newest NumEvents] [-Source Sources]
[-UserName UserNames]

 Limit-EventLog Confi gures limits on event log size and event retention for
specifi ed logs on specifi ed computers.

Limit-EventLog [-ComputerName ComputerNames] [-MaximumKiloBytes
MaxSize] [-OverFlowAction {DoNotOverwrite | OverwriteAsNeeded |
OverwriteOlder] [-Retention MinDays] [-LogName] LogNames

 Show-EventLog Displays the event logs of the local computer or a remote
computer in Event Viewer.

Show-EventLog [[-ComputerName] ComputerName]

 NOTE You can use Get-Event, Wait-Event, and Remove-Event to work with the

PowerShell event log. When you are creating your own event logs, you can use

 New-EventLog, Register-ObjectEvent, Register-EngineEvent, Unregister-Event,

 Get-EventSubscriber, and Register-WmiEvent.

{BasicParams}
[-ComputerName ComputerName] [-Credential CredentialObject]

{AddtlParams}
[-FilterXPath XPathQuery] [-Oldest] [-MaxEvents NumEvents]

Clear-EventLog [[-ComputerName] ComputerNames] [-LogName] LogNames

Get-EventLog [-List] [-ComputerName ComputerNames] [-AsString]

Get-EventLog [-ComputerName ComputerNames] [-LogName] LogName
[-AsBaseObject] [-After DateTime] [-Before DateTime]
[-EntryType EntryTypes] [-Index IndexValues] [[-InstanceID] ID]
[-Message Message] [-Newest NumEvents] [-Source Sources]
[-UserName UserNames]

Limit-EventLog [-ComputerName ComputerNames] [-MaximumKiloBytes
MaxSize] [-OverFlowAction {DoNotOverwrite | OverwriteAsNeeded |
OverwriteOlder] [-Retention MinDays] [-LogName] LogNames

Show-EventLog [[-ComputerName] ComputerName]

CHAPTER 13 Monitoring and Optimizing Windows Systems366

Monitoring system events isn’t something you should do haphazardly. Rather, it
is something you should do routinely and thoroughly. With servers, you will want to
 examine event logs at least once a day. With desktop computers, you will want to
 examine logs on specifi c computers as necessary, such as when a user reports a problem.

Viewing and Filtering Event Logs

You can obtain detailed information from the event logs using either Get-EventLog
or Get-WinEvent. Get-EventLog is handy for its versatility and simplicity. Use
Get-WinEvent when you want to apply complex fi lters, such as those based on XPath
queries or hashtable strings. If you don’t use complex fi lters, you really don’t need
Get-WinEvent.

The basic syntax for Get-EventLog is

get-eventlog "LogName" [–computername ComputerNames]

where LogName is the name of the log you want to work with—such as
“ Application,” “System,” or “Directory Service”—and ComputerNames are the names
of remote computers you want to work with. In this example, you examine the
 Application log:

get-eventlog "Application" –computername fileserver87, dbserver23

NOTE Technically, the quotation marks are necessary only when the log name

 contains a space, as is the case with the DNS Server, Directory Service, and File

 Replication Service logs.

The output of this query will look similar to the following:

Index Time EntryType Source InstanceID Message
----- ---- --------- ------ ---------- -------
22278 Feb 27 10:54 Information DQLWinService 0 The description
for Event ID '0' in Source 'DQL
22277 Feb 27 10:49 Information DQLWinService 0 The description
for Event ID '0' in Source 'DQL

 As you can see, the output shows the Index, Time, EntryType, Source, InstanceID,
and Message properties of events. The Index is the position of the event in the event
log. The Time is the time the event was written. The EntryType shows the category
of the event. The Source shows the source of the event. The InstanceID shows the
specifi c event that occurred with a numeric identifi er (and is the same as the EventID
fi eld in the event logs). The Message shows the description of the event.

Because the index is the position of the event in the log, this example lists events
22,277 and 22,278. By default, Get-EventLog returns every event in the specifi ed
event log from newest to oldest. In most cases, this is simply too much information,

get-eventlog "LogName" [–computername ComputerNames]

get-eventlog "Application" –computername fileserver87, dbserver23

Index Time EntryType Source InstanceID Message
----- ---- --------- ------ ---------- -------
22278 Feb 27 10:54 Information DQLWinService 0 The description
for Event ID '0' in Source 'DQL
22277 Feb 27 10:49 Information DQLWinService 0 The description
for Event ID '0' in Source 'DQL

 Monitoring and Optimizing Windows Systems CHAPTER 13 367

and you’ll need to fi lter the events to get a usable amount of data. One way to
fi lter the event logs is to specify that you want to see details about only the newest
events. For example, you might want to see only the 50 newest events in a log.

 Using the –Newest parameter, you can limit the return to the newest events. The
following example lists the 50 newest events in the security log:

get-eventlog "security" -newest 50

 One of the key reasons for using Get-EventLog is its ability to group and fi lter
events in the result set. When you group events by type, you can more easily sepa-
rate informational events from critical, warning, and error events. When you group
by source, you can more easily track events from specifi c sources. When you group
by event ID, you can more easily correlate the recurrence of specifi c events.

 You can group events by Source, EventId, EntryType, and TimeGenerated using
the following technique:

 1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 100 -logname "application"

 2. Use the Group-Object cmdlet to group the event objects by a specifi ed
property. In this example, you group by EventType:

$e | group-object -property eventtype

 Another way to work with events is to sort them according to a specifi c property.
You can sort by Source, EventId, EntryType, or TimeGenerated using the following
technique:

 1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 100 -logname "application"

 2. Use the Sort-Object cmdlet to sort the event objects by a specifi ed property.
In this example, you sort by EntryType:

$e | sort-object -property entrytype

 Typically, you won’t want to see every event generated on a system. More often,
you will want to see only warnings or critical errors, and that is precisely what fi lters
are for. Using fi lters, you can include only events that match the criteria you specify.
To do this, you search the EntryType property for occurrences of the word error.
Here is an example:

 1. Get the events you want to work with, and store them in a variable, such as

$e = get-eventlog -newest 500 -logname "application"

get-eventlog "security" -newest 50

$e = get-eventlog -newest 100 -logname "application"

$e | group-object -property eventtype

$e = get-eventlog -newest 100 -logname "application"

$e | sort-object -property entrytype

$e = get-eventlog -newest 500 -logname "application"

CHAPTER 13 Monitoring and Optimizing Windows Systems368

 2. Use the Where-Object cmdlet to search for specifi c text in a named property
of the event objects stored in $e. In this example, you match events with the
Error entry type:

$e | where-object {$_.EntryType -match "error"}

With the –Match parameter, the Where-Object cmdlet uses a search algorithm
that is not case-sensitive, meaning you can type Error, error, or ERROR to match
 error events. You can also search for warning, critical, and information events.
Because Where-Object considers partial text matches to be valid, you don’t want to
enter the full entry type. You can also search for warn, crit, or info, such as

$e = get-eventlog -newest 100 -logname "application"
$e | where-object {$_.EntryType -match "warn"}

 You can use Where-Object with other event object properties as well. The fol-
lowing example searches for event sources containing the text User Profi le Service:

$e = get-eventlog -newest 500 -logname "application"
$e | where-object {$_.Source -match "User Profile Service"}

 The following example searches for event ID 1530:

$e = get-eventlog -newest 500 -logname "application"
$e | where-object {$_.EventID -match "1530"}

 Sometimes, you’ll want to fi nd events that occurred before or after a specifi c
date, and you can do this using the –Before and –After parameters. The –Before
 parameter gets only the events that occur before a specifi ed date and time. The –After
parameter gets only the events that occur after a specifi ed date and time.

 In the following example, you get all of the errors in the System log that occurred
in July 2010:

$Jun30 = get-date 6/30/10
$Aug1 = get-date 8/01/10

get-eventlog -log "system" -entrytype Error -after $jun30 -before $aug1

 In the following example, you get all of the errors in the System log that occurred
in the last seven days:

$startdate = (get-date).adddays(-7)
get-eventlog -log "system" -entrytype Error -after $startdate

$e | where-object {$_.EntryType -match "error"}

$e = get-eventlog -newest 100 -logname "application"
$e | where-object {$_.EntryType -match "warn"}

$e = get-eventlog -newest 500 -logname "application"
$e | where-object {$_.Source -match "User Profile Service"}

$e = get-eventlog -newest 500 -logname "application"
$e | where-object {$_.EventID -match "1530"}

$Jun30 = get-date 6/30/10
$Aug1 = get-date 8/01/10

get-eventlog -log "system" -entrytype Error -after $jun30 -before $aug1

$startdate = (get-date).adddays(-7)
get-eventlog -log "system" -entrytype Error -after $startdate

 Monitoring and Optimizing Windows Systems CHAPTER 13 369

 You can automate the event querying process by creating a script that obtains
the event information you want to see and then writes it to a text fi le. Consider the
following example:

$e = get-eventlog -newest 100 -logname "system" $e | where-object
{$_.EntryType -match "error"} > \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "application" $e | where-object
{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "security" $e | where-object
{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

 Here, you are examining the system, application, and security event logs and
writing any resulting output to a network share on FileServer18. If any of the named
logs have error events among the 100 most recent events in the logs, the errors are
written to the CurrentLog.txt fi le. Because the fi rst redirection is overwrite (>) and
the remaining entries are append (>>), any existing Currentlog.txt fi le is overwritten
each time the script runs. This ensures that only current events are listed. To take the
automation process a step further, you could create a scheduled task that runs the
script each day or at specifi c intervals during the day.

 Setting Log Options

 Log options allow you to control the size of the event logs as well as how logging
is handled. By default, event logs are set with a maximum fi le size. Then, when a
log reaches this limit, events are overwritten to prevent the log from exceeding the
maximum fi le size.

 You use Limit-EventLog to set log options. The basic syntax is

Limit-EventLog [-ComputerName ComputerNames] [-LogName] LogNames Options

 Here ComputerNames are the names of the computers you are confi guring,
 LogNames sets the logs to modify, and Options includes one or more of the following:

 –MaximumSize Sets the maximum size in bytes of a log fi le. The size must
be in the range 64 KB to 4 GB, in increments of 64 KB. Make sure that the
drive containing the operating system has enough free space for the maxi-
mum log size you select. Most log fi les are stored in the %SystemRoot%\
System32\Winevt\Logs directory by default.

 –OverFlowAction Sets the event log wrapping mode. The options are
DoNotOverwrite, OverwriteAsNeeded, and OverwriteOlder. With DoNot-
Overwrite, the computer generates error messages telling you the event log
is full when the maximum fi le size is reached. With OverwriteAsNeeded, each
new entry overwrites the oldest entry when the maximum fi le size is reached,

$e = get-eventlog -newest 100 -logname "system" $e | where-object
{$_.EntryType -match "error"} > \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "application" $e | where-object
{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

$e = get-eventlog -newest 100 -logname "security" $e | where-object
{$_.EntryType -match "error"} >> \\FileServer18\www\currentlog.txt

Limit-EventLog [-ComputerName ComputerNames] [-LogName] LogNames Options

CHAPTER 13 Monitoring and Optimizing Windows Systems370

and there are no limitations. With Overwrite Older, new events overwrite only
events older than the value specifi ed by the Retention property when the
maximum fi le size is reached. If there are no events older than the minimum
retention value, the computer generates error messages telling you events
cannot be overwritten.

 –Retention Sets the minimum number of days that an event must remain
in the event log.

In the following example, you confi gure the system log with a maximum size of
4096 KB, an overfl ow action of OverwriteOlder, and a minimum retention period of
seven days:

limit-eventlog –maximumsize 4096kb –overflowaction overwriteolder
–retention 7 –logname system

If you are confi guring multiple computers, you can use the –ComputerName
property to specify the computer names. Or you can get the list of computer names
from a text fi le as shown in the following example:

limit-eventlog -computername (get-content c:\data\clist.txt)
–maximumkilobytes 4096 –overflowaction overwriteolder –retention 7
–logname system

Here, you get the list of remote computers to manage from a fi le called CList.txt
in the C:\Data directory.

Archiving and Clearing Event Logs

On key systems such as domain controllers and application servers, you’ll want to
keep several months’ worth of event logs. However, it usually isn’t practical to set
the maximum log size to accommodate this. Instead, you should allow Windows to
periodically archive the event logs, or you should manually archive the event logs.
Logs can be archived in four formats:

 Event fi les (.evtx) format, for access in Event Viewer

 Tab-delimited text (.txt) format, for access in text editors or word processors
or for import into spreadsheets and databases

 Comma-delimited text (.csv) format, for import into spreadsheets or
 databases

 XML (.xml) format, for saving as a structured Extensible Markup Language
(XML) fi le.

 The best format to use for archiving is the .evtx format. Use this format if
you plan to review old logs in the Event Viewer. However, if you plan to review
logs in other applications, you might need to save the logs in a tab-delimited or
 comma-delimited format. With the tab-delimited or comma-delimited format,
you sometimes need to edit the log fi le in a text editor for the log to be properly

limit-eventlog –maximumsize 4096kb –overflowaction overwriteolder
–retention 7 –logname system

limit-eventlog -computername (get-content c:\data\clist.txt)
–maximumkilobytes 4096 –overflowaction overwriteolder –retention 7
–logname system

 Monitoring and Optimizing Windows Systems CHAPTER 13 371

 interpreted. If you have saved the log in the .evtx format, you can always save
 another copy in the tab-delimited or comma-delimited format later by doing
 another Save As after opening the archive in the Event Viewer.

 Windows creates log archives automatically when you select the event log-
wrapping mode Archive The Log When Full, Do Not Overwrite Events. This mode is
set in Event Viewer.

 You can create a log archive manually by following these steps:

 1. In Event Viewer, you should see a list of event logs. Right-click the event log
you want to archive, and select Save Events As from the shortcut menu.

 2. In the Save As dialog box, select a directory and type a log fi le name.

 3. In the Save As Type dialog box, Event Files (*.evtx) is the default fi le type.
Select a log format as appropriate and then choose Save.

 4. If the Display Information dialog box is displayed, choose the appropriate
display options and then click OK.

 If you plan to archive logs regularly, you might want to create an archive direc-
tory. This way you can easily locate the log archives. You should also name the log
fi le so that you can easily determine the log fi le type and the period of the archive.
For example, if you’re archiving the system log fi le for January 2010, you might want
to use the fi le name System Log January 2010.

 When an event log is full and you want to clear it, you can do so using Clear-
EventLog. The basic syntax is

Clear-EventLog [-ComputerName ComputerNames] [-LogName] LogNames

 Here ComputerNames are the names of the computers you are confi guring and
LogNames sets the logs to clear, such as

clear-eventlog system

 Writing Custom Events to the Event Logs

 Whenever you work with automated scripts, scheduled tasks, or custom applica-
tions, you might want those scripts, tasks, or applications to write custom events to
the event logs. For example, if a script runs normally, you might want to write an
informational event in the application log that specifi es this so that it is easier to
determine that the script ran and completed normally. Similarly, if a script doesn’t
run normally and generates errors, you might want to log an error or warning event
in the application log so that you’ll know to examine the script and determine what
happened.

 Windows PowerShell includes built-in logging features that log events to the
PowerShell event log. You can view events in this log using Get-EventLog. You

Clear-EventLog [-ComputerName ComputerNames] [-LogName] LogNames

clear-eventlog system

CHAPTER 13 Monitoring and Optimizing Windows Systems372

control logging using the following environment variables, which must be set in the
appropriate profi le or profi les to be applicable:

 $LogCommandHealthEvent Determines whether errors and exceptions in
command initialization and processing are logged

 $LogCommandLifecycleEvent Determines whether PowerShell logs the
starting and stopping of commands and command pipelines and security
exceptions in command discovery

 $LogEngineHealthEvent Determines whether PowerShell logs errors and
failures of sessions

 $LogEngineLifecycleEvent Determines whether PowerShell logs the
opening and closing of sessions

 $LogProviderHealthEvent Determines whether PowerShell logs provider
errors, such as read and write errors, lookup errors, and invocation errors

 $LogProviderLifecycleEvent Determines whether PowerShell logs adding
and removing of PowerShell providers

If you set a logging variable to $True, the related events are logged in the
 PowerShell log. Use a value of $False to turn off logging.

You can create custom events using the Eventcreate utility. Custom events can be
logged in any available log except the security log, and they can include the event
source, ID, and description you want to use. The syntax for Eventcreate is as follows:

eventcreate /l LogName /so EventSource /t EventType /id EventID
/d EventDescr

 LogName Sets the name of the log to which the event should be written.
Use quotation marks if the log name contains spaces, as in “DNS Server.”

TIP Although you cannot write custom events to the security log, you can write

custom events to the other logs. Start by writing a dummy event using the event

source you want to register for use with that log. The initial event for that source

will be written to the application log. You can then use the source with the speci-

fi ed log and your custom events.

 EventSource Specifi es the source to use for the event, and can be any
string of characters. If the string contains spaces, use quotation marks, as in
“Event Tracker.” In most cases, you’ll want the event source to identify the
application, task, or script that is generating the error.

 REAL WORLD Carefully plan the event source you want to use before you write

events to the logs using those sources. Each event source you use must be unique

and cannot have the same name as an existing source used by an installed service or

application. Further, you shouldn’t use event source names used by Windows roles,

role services, or features. For example, you shouldn’t use DNS, W32Time, or Ntfrs

as sources because these sources are used by Windows Server 2008.

eventcreate /l LogName /so EventSource /t EventType /id EventID
/d EventDescr

 Monitoring and Optimizing Windows Systems CHAPTER 13 373

 Additionally, once you use an event source with a particular log, the event source is

registered for use with that log on the specifi ed system. For example, you cannot use

“EventChecker” as a source in the application log and in the system log on FILESERVER82.

If you try to write an event using “EventChecker” to the system log after writing a previ-

ous event with that source to the application log, you will see the following error mes-

sage: “ERROR: Source already exists in 'Application' log. Source cannot be duplicated.”

 EventType Sets the event type as Information, Warning, or Error. Audit
Success and Audit Failure event types are not valid; these events are used with
the security logs, and you cannot write custom events to the security logs.

 EventID Specifi es the numeric ID for the event, and can be any value from
1 to 1,000. Before you assign event IDs haphazardly, you might want to
create a list of the general events that can occur and then break these down
into categories. You can then assign a range of event IDs to each category.
For example, events in the 100s could be general events, events in the 200s
could be status events, events in the 500s could be warning events, and
events in the 900s could be error events.

 EventDescr Sets the description for the event, and can be any string of
characters. Be sure to enclose the description in quotation marks.

 Eventcreate runs by default on the local computer with the permissions of the
user who is currently logged on. As necessary, you can also specify the remote com-
puter whose tasks you want to query and the Run As permissions using /S Computer
/u [Domain\]User [/P Password], where Computer is the remote computer name
or IP address, Domain is the optional domain name in which the user account is
located, User is the name of the user account whose permissions you want to use,
and Password is the optional password for the user account.

 To see how you can use Eventcreate, consider the following examples:

CREATE AN INFORMATION EVENT IN THE APPLICATION LOG WITH THE SOURCE

EVENT TRACKER AND EVENT ID 209:

eventcreate /l "application" /t information /so "Event Tracker"
/id 209 /d "evs.bat script ran without errors."

CREATE A WARNING EVENT IN THE SYSTEM LOG WITH THE SOURCE CUSTAPP AND

EVENT ID 511:

eventcreate /l "system" /t warning /so "CustApp" /id 511
/d "sysck.exe didn't complete successfully."

CREATE AN ERROR EVENT IN THE SYSTEM LOG ON FILESERVER18 WITH THE SOURCE

“SYSMON” AND EVENT ID 918:

eventcreate /s FileServer18 /l "system" /t error /so "SysMon"
/id 918 /d "sysmon.exe was unable to verify write operation."

eventcreate /l "application" /t information /so "Event Tracker"
/id 209 /d "evs.bat script ran without errors."

eventcreate /l "system" /t warning /so "CustApp" /id 511
/d "sysck.exe didn't complete successfully."

eventcreate /s FileServer18 /l "system" /t error /so "SysMon"
/id 918 /d "sysmon.exe was unable to verify write operation."

 CHAPTER 13 Monitoring and Optimizing Windows Systems374

Creating and Using Saved Queries

For Windows Vista, Windows Server 2008, and later, Microsoft significantly en-
hanced Event Viewer’s filtering and query capabilities. Because of these enhance-
ments, Event Viewer now supports XPath queries for creating custom views and
filtering event logs. XPath is a non-XML language used to identify specific parts
of XML documents. Event Viewer uses XPath expressions that match and select
elements in a source log and copy them to a destination log to create a custom or
filtered view.

When you are creating a custom or filtered view in Event Viewer, you can copy
the XPath query and save it to an Event Viewer Custom View file. By running this
query again, you can re-create the custom view or filter on any computer run-
ning Windows Vista or Windows Server 2008. For example, if you create a filtered
view of the application log that helps you identify a problem with SQL Server, you
can save the related XPath query to a Custom View file so that you can create the
filtered view on other computers in your organization.

Event Viewer creates several filtered views of the event logs for you automati-
cally. Filtered views are listed under the Custom Views node. When you select the
Administrative Events node, you see a list of all errors and warnings for all logs.
When you expand the Server Roles node and then select a role-specific view, you
see a list of all events for the selected role.

You can create and save your own custom view by following these steps:

 1. Start Event Viewer by clicking Event Viewer on the Administrative Tools
menu.

 2. Select the Custom Views node. In the Actions pane or on the Action menu,
click Create Custom View.

 3. In the Create Custom View dialog box, use the Logged list to select the
included time frame for logged events. You can choose to include events
from Anytime, Last Hour, Last 12 Hours, Last 24 Hours, Last 7 Days, or Last
30 Days. You also can specify a custom range.

 4. Use the Event Level check boxes to specify the level of events to include.
Select Verbose to get additional detail.

 5. You can create a custom view for either a specific set of logs or a specific set
of event sources:

 Use the Event Logs list to select event logs to include. You can select
multiple event logs by selecting their related check boxes. If you select
specific event logs, all other event logs are excluded.

 Use the Event Sources list to select event sources to include. You can
select multiple event sources by selecting their related check boxes. If you
select specific event sources, all other event sources are excluded.

 6. Optionally, use the User and Computer(s) boxes to specify users and comput-
ers that should be included. If you do not specify the users and computers to
be included, events generated by all users and computers are included.

 Monitoring and Optimizing Windows Systems CHAPTER 13 375

 7. Click the XML tab to display the related XPath query.

 8. Click OK to close the Create Custom View dialog box. In the Save Filter To
Custom View dialog box, type a name and description for the custom view.

 9. Select where to save the custom view. By default, custom views are saved
under the Custom View node. You can create a new node by clicking New
Folder, typing the name of the new folder, and then clicking OK.

 10. Click OK to close the Save Filter To Custom View dialog box. You should now
see a fi ltered list of events.

 11. Right-click the custom view and then select Export Custom View. Use the
Save As dialog box to select a save location and enter a fi le name for the
Event Viewer Custom View fi le.

 The Custom View fi le contains the XPath query that was displayed on the XML
tab previously. Members of the Event Log Readers group, administrators, and others
with appropriate permissions can run the query to view events on remote comput-
ers using the following syntax:

eventvwr ComputerName /v: QueryFile

 Here ComputerName is the name of the remote computer whose events you
want to examine and QueryFile is the name or full path to the Custom View fi le
containing the XPath query, such as

eventvwr fileserver18 /v: importantevents.xml

 When Event Viewer starts, you’ll fi nd the custom view under the Custom Views
node.

Managing System Services

 Services provide key functions to workstations and servers. To manage system ser-
vices on local and remote systems, you use the following commands:

 Get-Service Gets information about the services on a local or remote com-
puter, including running and stopped services. You can specify services by
their service names or display names, or you can pass in references to service
objects to work with.

Get-Service [[-Name] ServiceNames] [AddlParams]
Get-Service -DisplayName ServiceNames [AddlParams]
Get-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-ComputerName ComputerNames] [-DependentServices] [-Exclude
ServiceNames] [-Include ServiceNames] [-ServicesDependedOn]

eventvwr ComputerName /v: QueryFile

eventvwr fileserver18 /v: importantevents.xml

Get-Service [[-Name] ServiceNames] [AddlParams]
Get-Service -DisplayName ServiceNames [AddlParams]
Get-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-ComputerName ComputerNames] [-DependentServices] [-Exclude
ServiceNames] [-Include ServiceNames] [-ServicesDependedOn]

CHAPTER 13 Monitoring and Optimizing Windows Systems376

 Stop-Service Stops one or more running services. You can specify services
by their service names or display names, or you can pass in references to ser-
vice objects to work with. Services that can be stopped indicate this because
the CanStop property is set to True. Further, you can stop only a service that
is in a state where stopping is permitted.

Stop-Service [-Name] ServiceNames [AddlParams]
Stop-Service -DisplayName ServiceNames [AddlParams]
Stop-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

 Start-Service Starts one or more stopped services. You can specify services
by their service names or display names, or you can pass in references to
service objects to work with.

Start-Service [-Name] ServiceNames [AddlParams]
Start-Service -DisplayName ServiceNames [AddlParams]
Start-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

 Suspend-Service Suspends (pauses) one or more running services. While
paused, a service is still running, but its execution is halted until it is resumed.
You can specify services by their service names or display names, or you
can pass in references to service objects to work with. Services that can be
suspended indicate this because the CanPauseAndContinue property is set
to True. Further, you can pause only a service that is in a state where pausing
is permitted.

Suspend-Service [-Name] ServiceNames [AddlParams]
Suspend-Service -DisplayName ServiceNames [AddlParams]
Suspend-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Exclude ServiceNames] [-Include ServiceNames] [-PassThru]

 Resume-Service Resumes one or more suspended (paused) services. If you
reference a service that is not paused, the control change is ignored. You can
specify services by their service names or display names, or you can pass in
references to service objects to work with.

Stop-Service [-Name] ServiceNames [AddlParams]
Stop-Service -DisplayName ServiceNames [AddlParams]
Stop-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

Start-Service [-Name] ServiceNames [AddlParams]
Start-Service -DisplayName ServiceNames [AddlParams]
Start-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

Suspend-Service [-Name] ServiceNames [AddlParams]
Suspend-Service -DisplayName ServiceNames [AddlParams]
Suspend-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Exclude ServiceNames] [-Include ServiceNames] [-PassThru]

 Monitoring and Optimizing Windows Systems CHAPTER 13 377

Resume-Service [-Name] ServiceNames [AddlParams]
Resume-Service -DisplayName ServiceNames [AddlParams]
Resume-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Exclude ServiceNames] [-Include ServiceNames] [-PassThru]

 Restart-Service Stops and then starts one or more services. If a service
is already stopped, it is started. You can specify services by their service
names or display names, or you can pass in references to service objects to
work with.

Restart-Service [-Name] ServiceNames [AddlParams]
Restart-Service -DisplayName ServiceNames [AddlParams]
Restart-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

 Set-Service Changes the properties or status of a service on a local or
remote computer. Use the status to change the state of the service.

Set-Service [-Name] ServiceName [| -InputObject ServiceObjects]
[-DisplayName DisplayName] [-Description Description]
[-StartupType {Automatic | Manual | Disabled}]
[-Status {Running | Stopped | Paused}] [-PassThru] [-ComputerName
ComputerNames]

 New-Service Creates a new Windows service in the registry and in the
services database. Pass in a credential if required to create the service.

New-Service [-Credential CredentialObject] [-DependsOn
ServiceNames] [-Description Description] [-DisplayName DisplayName]
[-StartupType {Automatic | Manual | Disabled}]
[-Name] Name [-BinaryPathName] PathtoExeFile

 With some of these commands, you can specify the name of the remote com-
puter whose services you want to work with. To do this, use the –ComputerName
parameter and then specify the NetBIOS name, IP address, or fully qualifi ed domain
name (FQDN) of the remote computer or computers that you want to work with.
In some cases, you might want to specify the local computer as well as a remote
computer. To reference the local computer, type the computer name, a dot (.), or
“localhost”.

Resume-Service [-Name] ServiceNames [AddlParams]
Resume-Service -DisplayName ServiceNames [AddlParams]
Resume-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Exclude ServiceNames] [-Include ServiceNames] [-PassThru]

Restart-Service [-Name] ServiceNames [AddlParams]
Restart-Service -DisplayName ServiceNames [AddlParams]
Restart-Service [-InputObject ServiceObjects] [AddlParams]

{AddlParams}
[-Include ServiceNames] [-Exclude ServiceNames] [-Force]
[-PassThru]

Set-Service [-Name] ServiceName [| -InputObject ServiceObjects]
[-DisplayName DisplayName] [-Description Description]
[-StartupType {Automatic | Manual | Disabled}]
[-Status {Running | Stopped | Paused}] [-PassThru] [-ComputerName
ComputerNames]

New-Service [-Credential CredentialObject] [-DependsOn
ServiceNames] [-Description Description] [-DisplayName DisplayName]
[-StartupType {Automatic | Manual | Disabled}]
[-Name] Name [-BinaryPathName] PathtoExeFile

CHAPTER 13 Monitoring and Optimizing Windows Systems378

Viewing Confi gured Services

To get a list of all services confi gured on a system, type get-service at the
 command prompt. Using the –ComputerName parameter, you can specify a remote
computer to work with, as shown in the following example and sample output:

get-service –computername fileserver86

Status Name DisplayName

------ ---- -----------

Stopped AppMgmt Application Management

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

Running Browser Computer Browser

Stopped CertPropSvc Certificate Propagation

The –ComputerName parameter accepts multiple name values. You can check
the status of services on multiple computers simply by entering the names of the
computers to check in a comma-separated list as shown in the following example:

get-service –computername fileserver86, dcserver22, printserver31

Rather than type computer names each time, you can enter computer names on
separate lines in a text fi le and then get the list of computer names from the text
fi le, as shown in the following example:

get-service -computername (get-content c:\data\clist.txt)

Here, you get the list of remote computers to check from a fi le called CList.txt in
the C:\Data directory.

When you are looking for a specifi c service, you can reference the service by its
service name or display name. To match partial names, you can use wildcard charac-
ters as shown in the following example and sample output:

get-service –displayname *browser* –computername fileserver86

Status Name DisplayName

------ ---- -----------

Running Browser Computer Browser

Here, you look for all services where the display name includes the word browser.

Get-Service returns objects representing each service matching the criteria you
specify. From previous examples and sample output, you can see that the standard
output includes the Status, Name, and DisplayName properties. To view all of the

get-service –computername fileserver86

Status Name DisplayName

------ ---- -----------

Stopped AppMgmt Application Management

Running AudioEndpointBu... Windows Audio Endpoint Builder

Running Audiosrv Windows Audio

Running BFE Base Filtering Engine

Running BITS Background Intelligent Transfer Ser...

Running Browser Computer Browser

Stopped CertPropSvc Certificate Propagation

get-service –computername fileserver86, dcserver22, printserver31

get-service -computername (get-content c:\data\clist.txt)

get-service –displayname *browser* –computername fileserver86

Status Name DisplayName

------ ---- -----------

Running Browser Computer Browser

 Monitoring and Optimizing Windows Systems CHAPTER 13 379

available properties, you need to format the output as a list, as shown in the follow-
ing example and sample output:

get-service -displayname *browser* -computername server12 | format-list *

Name : Browser

CanPauseAndContinue : False

CanShutdown : False

CanStop : True

DisplayName : Computer Browser

DependentServices : {}

MachineName : Server12

ServiceName : Browser

ServicesDependedOn : {LanmanServer, LanmanWorkstation}

ServiceHandle :

Status : Running

ServiceType : Win32ShareProcess

Site :

Container :

The output shows the exact confi guration of the service. As an administrator, you
will work with the following properties most often:

 Name/ServiceName The abbreviated name of the service. Only services
installed on the system are listed here. If a service you need isn’t listed, you’ll
need to install it.

 DisplayName The descriptive name of the service.

 Status The state of the service as Running, Paused, or Stopped.

 DependentServices Services that cannot run unless the specifi ed service is
running.

 ServicesDependedOn The services this service relies on to operate.

 Type The type of service and whether it is a shared process.

 MachineName The name of the computer the service is confi gured on.
This property is available only when you use the –ComputerName property.

 TIP When you are confi guring services, it is sometimes important to know whether

a process runs in its own context or is shared. Shared processes are listed as

WIN32SHAREPROCESS. Processes that run in their own context are listed as

 WIN32OWNPROCESS.

 By default, Get-Service looks at all services regardless of their status. With the
Status property, you can work with services in a specifi c state, such as Stopped or
Paused. Consider the following examples:

get-service | where-object {$_.status -eq "Running"}
get-service | where-object {$_.status -eq "Stopped"}

get-service -displayname *browser* -computername server12 | format-list *

Name : Browser

CanPauseAndContinue : False

CanShutdown : False

CanStop : True

DisplayName : Computer Browser

DependentServices : {}

MachineName : Server12

ServiceName : Browser

ServicesDependedOn : {LanmanServer, LanmanWorkstation}

ServiceHandle :

Status : Running

ServiceType : Win32ShareProcess

Site :

Container :

get-service | where-object {$_.status -eq "Running"}
get-service | where-object {$_.status -eq "Stopped"}

CHAPTER 13 Monitoring and Optimizing Windows Systems380

In the fi rst example, you list all services that are running. In the second example,
you list all services that are stopped.

Starting, Stopping, and Pausing Services

 As an administrator, you’ll often have to start, stop, or pause Windows services.
When you are working with an elevated, administrator PowerShell prompt, you can
do this using the service-related cmdlets or the methods of the Win32_Service class.
Examples using the service cmdlets follow:

START A SERVICE:

start-service ServiceName
start-service –displayname DisplayName
get-service ServiceName | start-service

PAUSE A SERVICE:

suspend-service ServiceName
suspend-service –displayname DisplayName
get-service ServiceName | suspend-service

RESUME A PAUSED SERVICE:

resume-service ServiceName
resume-service –displayname DisplayName
get-service ServiceName | resume-service

STOP A SERVICE:

stop-service ServiceName
stop-service –displayname DisplayName
get-service ServiceName | stop-service

 In this example, ServiceName in each case is the abbreviated name of a service,
and DisplayName is the descriptive name of a service, such as

stop-service –displayname "DNS Client"

Although Start-Service, Suspend-Service, Resume-Service, and Stop-Service don’t
support the –ComputerName parameter, you can use the following technique to
manage the state of services on remote computers:

get-service dnscache -computername engpc18 | stop-service
get-service dnscache -computername engpc18 | start-service

start-service ServiceName
start-service –displayname DisplayName
get-service ServiceName | start-service

suspend-service ServiceName
suspend-service –displayname DisplayName
get-service ServiceName | suspend-service

resume-service ServiceName
resume-service –displayname DisplayName
get-service ServiceName | resume-service

stop-service ServiceName
stop-service –displayname DisplayName
get-service ServiceName | stop-service

stop-service –displayname "DNS Client"

get-service dnscache -computername engpc18 | stop-service
get-service dnscache -computername engpc18 | start-service

 Monitoring and Optimizing Windows Systems CHAPTER 13 381

invoke-command -computername engpc18 -scriptblock {get-service dnscache |
stop-service }
invoke-command -computername engpc18 -scriptblock {get-service dnscache |
start-service }

 Here, you use Get-Service to get a Service object on a remote computer, and
then you manage the service using Start-Service, Suspend-Service, Resume-Service,
or Stop-Service as appropriate. Note that these commands report only failure. They
won’t tell you that the service was already started, stopped, paused, or resumed.

 Before you stop or pause a service, you should check to see if the service can
be stopped or paused. With Service objects, the properties you can check are
CanPause AndContinue and CanStop. An example and sample output follow:

$sname = read-host "Enter service name to stop"
$cname = read-host "Enter computer to work with"

$s = get-service $sname -computername $cname
if ($s.CanStop -eq $True) { $s | stop-service }

Enter service name to stop : dnscache

Enter computer to work with : engpc85

 Here, you get the name of the service and computer to work with by prompting
the user, and then you get the related Service object. If the service can be stopped,
you stop the service. As shown in the following example and sample output, you
can easily extend this basic functionality to perform other actions on services:

$cname = read-host "Enter computer to work with"
$sname = read-host "Enter service name to work with"

$s = get-service $sname -computername $cname
write-host "Service is:" $s.status -foregroundcolor green

$action = read-host "Specify action [Start|Stop|Pause|Resume]"

switch ($action) {

"start" { $s | start-service }
"stop" { if ($s.CanStop -eq $True) { $s | stop-service } }
"pause" { if ($s.CanPauseAndContinue -eq $True) { $s | pause-service } }
"resume" { $s | resume-service }

}

$su = get-service $sname -computername $cname
write-host "Service is:" $su.status -foregroundcolor green

invoke-command -computername engpc18 -scriptblock {get-service dnscache |
stop-service }
invoke-command -computername engpc18 -scriptblock {get-service dnscache |
start-service }

$sname = read-host "Enter service name to stop"
$cname = read-host "Enter computer to work with"

$s = get-service $sname -computername $cname
if ($s.CanStop -eq $True) { $s | stop-service }

Enter service name to stop : dnscache

Enter computer to work with : engpc85

$cname = read-host "Enter computer to work with"
$sname = read-host "Enter service name to work with"

$s = get-service $sname -computername $cname
write-host "Service is:" $s.status -foregroundcolor green

$action = read-host "Specify action [Start|Stop|Pause|Resume]"

switch ($action) {

"start" { $s | start-service }
"stop" { if ($s.CanStop -eq $True) { $s | stop-service } }
"pause" { if ($s.CanPauseAndContinue -eq $True) { $s | pause-service } }
"resume" { $s | resume-service }

}

$su = get-service $sname -computername $cname
write-host "Service is:" $su.status -foregroundcolor green

CHAPTER 13 Monitoring and Optimizing Windows Systems382

Enter computer to work with: techpc12

Enter service name to work with: dnscache

Service is: Running

Specify action [Start|Stop|Pause|Resume]: stop

Service is: Stopped

Here, you get the name of the service and computer to work with by prompt-
ing the user, and then you get the related Service object. Next, you display the
 current status of the service and then get the action to perform on the service. After
performing CanStop and CanPauseAndContinue tests if appropriate and taking the
appropriate action on the service, you display the updated status of the service.

REAL WORLD Want to manage services any time you are working with PowerShell?

Wrap this code in a function, and add it to your profi le. Then you can manage services

simply by calling the function. Here is an example:

function ms {
 #Insert code here
}

Now any time your profi le is loaded and you type ms at the PowerShell prompt, you’ll

be able to manage services on any computer in the enterprise.

Confi guring Service Startup

You can set Windows services to start manually or automatically. You also can turn
services off permanently by disabling them. You confi gure service startup using

set-service ServiceName -StartupType Type [-ComputerName ComputerNames]

or

set-service -displayname DisplayName -StartupType Type [-ComputerName
ComputerNames]

where ServiceName or DisplayName identifi es the service to modify, Type is the
startup type to use, and ComputerNames are the names of the computers to work
with. The valid startup types are:

 Automatic Starts a service at system startup. If the service requires a de-
layed start, the subtype Automatic (Delayed Start) is assigned automatically.

 Manual Allows the service to be started manually by the service control
manager when a process invokes the service.

 Disable Disables the service to prevent it from being started the next time
the computer is started. If the service is running, it will continue to run until
the computer is shut down. You can stop the service if necessary.

Enter computer to work with: techpc12

Enter service name to work with: dnscache

Service is: Running

Specify action [Start|Stop|Pause|Resume]: stop

Service is: Stopped

function ms {
 #Insert code here
}

set-service ServiceName -StartupType Type [-ComputerName ComputerNames]

set-service -displayname DisplayName -StartupType Type [-ComputerName
ComputerNames]

 Monitoring and Optimizing Windows Systems CHAPTER 13 383

 Following this, you can confi gure a service to start automatically by using

set-service dnscache –startuptype automatic

 or

set-service dnscache –startuptype automatic –computername techpc85

 Instead of typing a comma-separated list of computer names, you can enter
computer names on separate lines in a text fi le and then get the list of computer
names from the text fi le as shown in the following example:

set-service dnscache –startuptype automatic –computername (get-content
c:\data\clist.txt)

 Here, you get the list of remote computers to work with from a fi le called CList.txt
in the C:\Data directory.

 Set-Service also lets you start, stop, and pause services. If you are enabling a ser-
vice on multiple computers, you also might want to start the service. You can enable
and start a service as shown in the following example:

set-service w3svc –startuptype automatic –status running

 If you are disabling a service on multiple computers, you also might want to stop
the service. You can disable and stop a service as shown in the following example:

set-service w3svc –startuptype disabled –status stopped

 Managing Service Logon and Recovery Modes

 Occasionally, you might need to manage service logon and recovery options. The
easiest way to do this is to use the Services Confi guration utility. This utility has
several subcommands that allow you to work with Windows services. The execut-
able for this utility is sc.exe. Although you normally can type sc at the prompt and
run this utility, sc is a default alias for Set-Content in Windows PowerShell. For this
reason, you must type sc.exe whenever you work with this utility at the PowerShell
prompt.

Confi guring Service Logon

 Using the SC confi g command, you can confi gure Windows services to log on as a
system account or as a specifi c user. To ensure a service logs on as the LocalSystem
account, use

sc.exe ComputerName config ServiceName obj= LocalSystem

set-service dnscache –startuptype automatic

set-service dnscache –startuptype automatic –computername techpc85

set-service dnscache –startuptype automatic –computername (get-content
c:\data\clist.txt)

set-service w3svc –startuptype automatic –status running

set-service w3svc –startuptype disabled –status stopped

sc.exe ComputerName config ServiceName obj= LocalSystem

CHAPTER 13 Monitoring and Optimizing Windows Systems384

where ComputerName is the Universal Naming Convention (UNC) name of the com-
puter to work with, and ServiceName is the name of the service you are confi guring
to use the LocalSystem account. If the service provides a user interface that can be
manipulated, add the fl ags type= interact type= own, as shown in the following
example:

sc.exe config vss obj= LocalSystem type= interact type= own

or

sc.exe \\techpc85 config vss obj= LocalSystem type= interact type= own

NOTE You must include a space after the equal sign (=) as shown. If you don’t use

a space, the command will fail. Note also these commands report only SUCCESS or

 FAILURE. They won’t tell you that the service was already confi gured in a specifi ed way.

The type= interact fl ag specifi es that the service is allowed to interact with the
Windows desktop. The type= own fl ag specifi es that the service runs in its own
 process. In the case of a service that shares its executable fi les with other services,
you use the type= share fl ag, as shown in this example:

sc.exe config dnscache obj= LocalSystem type= interact type= share

 TIP If you don’t know whether a service runs as a shared process or in its own con-

text, you should determine the service’s start type using Get-Service.

 Services can also log on using named accounts. To do this, use

sc.exe config ServiceName obj= [Domain\]User password= Password

where Domain is the optional domain name in which the user account is located,
User is the name of the user account whose permissions you want to use, and Pass-
word is the password of that account. Consider the following example:

sc.exe config vss obj= adatum\backers password= TenMen55!

Here, you confi gure Microsoft Visual SourceSafe (VSS) to use the Backers ac-
count in the Adatum domain. The output of the command should state SUCCESS or
FAILED. The change will fail if the account name is invalid or doesn’t exist, or if the
password for the account is invalid.

NOTE If a service has been previously confi gured to interact with the desktop under

the LocalSystem account, you cannot change the service to run under a domain ac-

count without using the type= own fl ag. The syntax therefore becomes sc config

ServiceName obj= [Domain\]User password= Password type= own.

sc.exe config vss obj= LocalSystem type= interact type= own

sc.exe \\techpc85 config vss obj= LocalSystem type= interact type= own

sc.exe config dnscache obj= LocalSystem type= interact type= share

sc.exe config ServiceName obj= [Domain\]User password=r Password

sc.exe config vss obj= adatum\backers password= TenMen55!

 Monitoring and Optimizing Windows Systems CHAPTER 13 385

 Although SC is designed to work with individual computers, you can use the
built-in features of Windows PowerShell to modify the way SC works, as shown in
the following example:

$c = "\\techpc85"
sc.exe $c query dnscache

 Here, rather than specifying the computer name explicitly, you pass in the com-
puter name as a variable.

 You can extend this basic technique to get a list of remote computers to work
with from a fi le. Here is an example:

$computers = (get-content c:\data\unclist.txt)
foreach ($c in $computers) { sc.exe $c query dnscache }

 Here, you get the list of computers to work with from a fi le called UncList.txt in
the C:\Data directory and then execute an SC query for each computer name.

TIP Don’t forget that SC requires computer names to be specifi ed using Universal

Naming Convention. This means you must type \\techpc85 rather than techpc85 in

the text fi le from which computer names are obtained.

Confi guring Service Recovery

 Using the SC Qfailure and Failure commands, you can view and confi gure actions taken
when a service fails. For example, you can confi gure a service so that the service control
manager attempts to restart it or to run an application that can resolve the problem.

 You can confi gure recovery options for the fi rst, second, and subsequent recov-
ery attempts. The current failure count is incremented each time a failure occurs.
You can also set a parameter that specifi es the time that must elapse before the
failure counter is reset. For example, you can specify that if 24 hours have passed
since the last failure, the failure counter should be reset.

 Before you try to confi gure service recovery, check the current recovery settings
using SC Qfailure. The syntax is

sc.exe ComputerName qfailure ServiceName

 where ComputerName is the UNC name of the computer to work with, and Service-
Name is the name of the service you want to work with, such as

sc.exe qfailure vss

 or

sc.exe \\techpc85 qfailure vss

$c = "\\techpc85"
sc.exe $c query dnscache

$computers = (get-content c:\data\unclist.txt)
foreach ($c in $computers) { sc.exe $c query dnscache }

sc.exe ComputerName qfailure ServiceName

sc.exe qfailure vss

sc.exe \\techpc85 qfailure vss

CHAPTER 13 Monitoring and Optimizing Windows Systems386

In the output, the failure actions are listed in the order they are performed. In
the following example output, VSS is confi gured to attempt to restart the service the
fi rst and second times the service fails and to restart the computer if the service fails
a third time:

[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: vss
 RESET_PERIOD (in seconds) : 86400
 REBOOT_MESSAGE :
 COMMAND_LINE :
 FAILURE_ACTIONS : RESTART -- Delay = 1 milliseconds.
 RESTART -- Delay = 1 milliseconds.
 REBOOT -- Delay = 1000 milliseconds.

NOTE Windows automatically confi gures recovery for some critical system services

during installation. Typically, these services are confi gured so that they attempt to

restart the service. Services can be confi gured so that they run programs or scripts as

well upon failure.

The command you use to confi gure service recovery is SC Failure, and its basic
syntax is

sc.exe failure ServiceName reset= FailureResetPeriod actions=
RecoveryActions

where ServiceName is the name of the service you are confi guring; FailureReset-
Period specifi es the time, in seconds, that must elapse without failure in order to
reset the failure counter; and RecoveryActions are the actions to take when failure
occurs plus the delay time (in milliseconds) before that action is initiated. The
 available recovery actions are:

 Take No Action (indicated by an empty string “”) The operating system
won’t attempt recovery for this failure but might still attempt recovery of
previous or subsequent failures.

 Restart The Service Stops and then starts the service after a brief pause.

 Run A Program Allows you to run a program or a script in case of failure.
The script can be a batch program or a Windows script. If you select this
option, set the full fi le path to the program you want to run, and then set
any necessary command-line parameters to pass in to the program when it
starts.

 Reboot The Computer Shuts down and then restarts the computer after
the specifi ed delay time has elapsed.

[SC] QueryServiceConfig2 SUCCESS

SERVICE_NAME: vss
 RESET_PERIOD (in seconds) : 86400
 REBOOT_MESSAGE :
 COMMAND_LINE :
 FAILURE_ACTIONS : RESTART -- Delay = 1 milliseconds.
 RESTART -- Delay = 1 milliseconds.
 REBOOT -- Delay = 1000 milliseconds.

sc.exe failure ServiceName reset= FailureResetPeriod actions=d
RecoveryActions

 Monitoring and Optimizing Windows Systems CHAPTER 13 387

 NOTE When you confi gure recovery options for critical services, you might want to

try to restart the service on the fi rst and second attempts and then reboot the server

on the third attempt.

 When you work with SC Failure, keep the following in mind:

 The reset period is set in seconds.

 Reset periods are commonly set in multiples of hours or days. An hour is
3,600 seconds, and a day is 86,400 seconds. For a two-hour reset period, for
example, you’d use the value 7,200.

 Each recovery action must be followed by the time to wait (in milliseconds)
before performing the action.

 For a service restart, you’ll probably want to use a short delay, such as
1 millisecond (no delay), 1 second (1,000 milliseconds), or 5 seconds
(5,000 milliseconds). For a restart of the computer, you’ll probably want to
use a longer delay, such as 15 seconds (15,000 milliseconds) or 30 seconds
(30,000 milliseconds).

 Enter the actions and their delay times as a single text entry, with each value
separated by a forward slash (/).

 For example, you could use the following value: restart/1000/restart/1000/
reboot/15000. Here, on the fi rst and second attempts the service is restarted
after a 1-second delay, and on the third attempt the computer is rebooted
after a 15-second delay.

 Consider the following examples:

sc.exe failure w3svc reset= 86400 actions=
restart/1/restart/1/reboot/30000

 Here, on the fi rst and second attempts the service is restarted almost immedi-
ately, and on the third attempt the computer is rebooted after a 30-second delay.
In addition, the failure counter is reset if no failures occur in a 24-hour period
(86,400 seconds). You can also specify a remote computer by inserting the UNC
name or IP address as shown in previous examples.

 If you use the Run action, you specify the command or program to run using
the Command= parameter. Follow the Command= parameter with the full fi le path
to the command to run and any arguments to pass to the command. Be sure to
enclose the command path and text in double quotation marks, as in the following
example:

sc.exe failure w3svc reset= 86400 actions= restart/1/restart/1/run/30000
command= "c:\restart_w3svc.exe 15"

sc.exe failure w3svc reset= 86400 actions=
restart/1/restart/1/reboot/30000

sc.exe failure w3svc reset= 86400 actions= restart/1/restart/1/run/30000
command= "c:\restart_w3svc.exe 15"

 CHAPTER 13 Monitoring and Optimizing Windows Systems388

Digging Deeper into Service Management

Although the Get-Service cmdlet provides sufficient details to help you perform
many administrative tasks, it doesn’t provide the detailed information you might
need to know to manage the configuration of services. At a minimum, to manage
service configuration, you need to know a service’s current start mode and start
name. The start mode specifies the startup mode of the service, and the start name
specifies the account name under which the service will run. A service’s start mode
can be set to any of the following:

 Automatic Indicates the service is started automatically by the service
control manager during startup of the operating system.

 Manual Indicates the service is started manually by the service control
manager when a process calls the StartService method.

 Disabled Indicates the service is disabled and cannot be started.

Most services run under one of the following accounts:

 NT Authority\LocalSystem LocalSystem is a pseudo account for running
system processes and handling system-level tasks. This account is part of the
Administrators group on a computer and has all user rights on the computer.
If services use this account, the related processes have full access to the
computer. Many services run under the LocalSystem account. In some cases,
these services have the privilege to interact with the desktop as well. Services
that need alternative privileges or logon rights run under the LocalService or
NetworkService accounts.

 NT Authority\LocalService LocalService is a pseudo account with limited
privileges. This account grants access to the local system only. The account
is part of the Users group on the computer and has the same rights as the
NetworkService account, except that it is limited to the local computer. If
services use this account, the related processes don’t have access to other
computers.

 NT Authority\NetworkService NetworkService is a pseudo account for
running services that need additional privileges and logon rights on a local
system and the network. This account is part of the Users group on the com-
puter and provides fewer permissions and privileges than the LocalSystem
account (but more than the LocalService account). Specifically, processes
running under this account can interact throughout a network using the
credentials of the computer account.

You can obtain the start mode, start name, and other configuration information
for services using Windows Management Instrumentation (WMI) and the Win32_
Service class. You use the Win32_Service class to create instances of service objects
as they are represented in WMI.

You can list all services configured on a computer by typing get-wmiobject

-class win32_service as shown in the following example and sample output:

 Monitoring and Optimizing Windows Systems CHAPTER 13 389

get-wmiobject -class win32_service |
format-table name, startmode, state, status

name startmode state status

---- --------- ----- ------

AppMgmt Manual Stopped OK

AudioEndpointBuilder Auto Running OK

Audiosrv Auto Running OK

BFE Auto Running OK

BITS Auto Running OK

Bonjour Service Auto Running OK

Browser Auto Running OK

CertPropSvc Manual Stopped OK

 If you want to work with a specifi c service or examine services with a specifi c
property value, you can add the –Filter parameter. In the following example and
sample output, you check the confi guration details of the Browser service:

get-wmiobject -class win32_service -filter "name='browser'"

ExitCode : 0

Name : Browser

ProcessId : 1136

StartMode : Auto

State : Running

Status : OK

 If you format the output as a list, you’ll see additional confi guration information
including PathName, which specifi es the executable that starts the service and any
parameters passed to this executable, and StartName, which specifi es the account
under which the service runs. In the following example and partial output, you
examine the properties of the DNS Client service:

$s = get-wmiobject -class win32_service -filter "name='dnscache'"
$s | format-list *

Name : Dnscache

Status : OK

ExitCode : 0

DesktopInteract : False

ErrorControl : Normal

PathName : C:\Windows\system32\svchost.exe -k NetworkService

ServiceType : Share Process

StartMode : Manual

AcceptPause : False

get-wmiobject -class win32_service |
format-table name, startmode, state, status

name startmode state status

---- --------- ----- ------

AppMgmt Manual Stopped OK

AudioEndpointBuilder Auto Running OK

Audiosrv Auto Running OK

BFE Auto Running OK

BITS Auto Running OK

Bonjour Service Auto Running OK

Browser Auto Running OK

CertPropSvc Manual Stopped OK

get-wmiobject -class win32_service -filter "name='browser'"

ExitCode : 0

Name : Browser

ProcessId : 1136

StartMode : Auto

State : Running

Status : OK

$s = get-wmiobject -class win32_service -filter "name='dnscache'"
$s | format-list *

Name : Dnscache

Status : OK

ExitCode : 0

DesktopInteract : False

ErrorControl : Normal

PathName : C:\Windows\system32\svchost.exe -k NetworkService

ServiceType : Share Process

StartMode : Manual

AcceptPause : False

CHAPTER 13 Monitoring and Optimizing Windows Systems390

AcceptStop : True

Caption : DNS Client

CheckPoint : 0

CreationClassName : Win32_Service

Description : Caches Domain Name System (DNS) names.

DisplayName : DNS Client

InstallDate :

ProcessId : 1536

ServiceSpecificExitCode : 0

Started : True

StartName : NT AUTHORITY\NetworkService

State : Running

SystemCreationClassName : Win32_ComputerSystem

SystemName : TechPC85

Get-WmiObject supports a –ComputerName parameter that lets you specify the
remote computer or computers to work with, as shown in these examples:

get-wmiobject -class win32_service –computername fileserver86,
dcserver22, printserver31

get-wmiobject -class win32_service -computername (get-content
c:\data\clist.txt)

NOTE When you are working with multiple computers, you can use the SystemName

property to help you determine the name of the computer the service is confi gured on.

You can work with the properties of Win32_Service objects in much the same
way as you work with properties of Service objects. To see a list of all services
 confi gured to start automatically, you can type the following command:

get-wmiobject -class win32_service -filter "startmode='auto'" |
format-table name, startmode, state, status

To view all running services, you can type

get-wmiobject -class win32_service -filter "state='running'" |
format-table name, startmode, state, status

The Win32_Service class provides a number of methods for managing system
services. These methods include:

 Change() Changes the confi guration of a user-confi gurable service. This
method accepts the following parameters in the following order: DisplayName,
PathName, ServiceTypeByte, ErrorControlByte, StartMode, DesktopInteract-
Boolean, StartName, StartPassword, LoadOrderGroup, LoadOrderGroup-
DependenciesArray, and ServiceDependenciesArray.

AcceptStop : True

Caption : DNS Client

CheckPoint : 0

CreationClassName : Win32_Service

Description : Caches Domain Name System (DNS) names.

DisplayName : DNS Client

InstallDate :

ProcessId : 1536

ServiceSpecificExitCode : 0

Started : True

StartName : NT AUTHORITY\NetworkService

State : Running

SystemCreationClassName : Win32_ComputerSystem

SystemName : TechPC85

get-wmiobject -class win32_service –computername fileserver86,
dcserver22, printserver31

get-wmiobject -class win32_service -computername (get-content
c:\data\clist.txt)

get-wmiobject -class win32_service -filter "startmode='auto'" |
format-table name, startmode, state, status

get-wmiobject -class win32_service -filter "state='running'" |
format-table name, startmode, state, status

 Monitoring and Optimizing Windows Systems CHAPTER 13 391

CAUTION Not all services can be reconfigured. Modifying services at the

PowerShell prompt is not something you should do without careful forethought.

PowerShell will let you make changes that could put your computer in an unstable

state. Before you make any changes to services, you should create a system restore

point as discussed in Chapter 14, “Fine-Tuning System Performance.”

 ChangeStartMode() Changes the start mode of a user-configurable ser-
vice. This method accepts a single parameter, which is the start mode to use.
Valid values are Manual, Automatic, or Disabled.

NOTE Some services are configured by default to use delayed-start automatic

mode. When you are working with Win32_Service, any time you set these services

to Automatic, they use delayed-start automatic mode. Additionally, note that

disabling a service doesn’t stop a running service. It only prevents the service from

being started the next time the computer is booted. To ensure that the service is

disabled and stopped, disable and then stop the service.

CAUTION Before you change the start mode of a service, you should check

dependencies and ensure any changes you make won’t affect other services.

 Delete() Deletes a user-configurable service (if the service is in a state
that allows this). Rather than delete a service, you should consider disabling
it. Disabled services no longer run and can easily be enabled if needed in
the future. Deleted services, however, must be reinstalled to be used in the
future.

CAUTION Exercise extreme caution if you plan to delete services using

 PowerShell. PowerShell will not warn you if you are making harmful changes to

your computer.

 InterrogateService() Connects to the service using the service control
manager. If the return value is zero, the service control manager was able
to connect to and interrogate the service using its configured parameters.
If the return value wasn’t zero, the service control manager encountered a
problem while trying to communicate with the service using the configured
parameters. If the service is stopped or paused, this method will always
return an error status.

 PauseService() Pauses the service, which might be necessary during
 troubleshooting or when performing diagnostics. Services that can be
paused indicate this by setting the AcceptPause property to True for their
services. Further, you can pause only a service that is in a state where
 pausing is permitted.

 ResumeService() Resumes the service after it has been paused.

CHAPTER 13 Monitoring and Optimizing Windows Systems392

 StopService() Stops the service, which might be necessary during trouble-
shooting or when performing diagnostics. Services that can be stopped
indicate this by setting the AcceptStop property to True for their services.
Further, you can stop only a service that is in a state where stopping is
 permitted.

 StartService() Starts a stopped service, including services that are confi g-
ured for manual startup.

When you are working with an elevated, administrator PowerShell prompt,
you can use these methods to manage system services. For example, you can set
Windows services to start manually or automatically. You can also turn them off per-
manently by disabling them. You confi gure service startup using the ChangeStart-
Mode() method to specify the desired start mode. The basic syntax is

$serviceObject.ChangeStartMode(StartMode)

where $serviceObject is a reference to a Win32_Service object, and StartMode is the
desired start mode entered as a string value, as shown in this example and sample
output:

$s = get-wmiobject -class win32_service –filter "name='dnscache'"
$s.changestartmode("automatic")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

Here, you set the start mode to Automatic. The return value in the output is
what you want to focus on. A return value of 0 indicates success. Any other return
value indicates an error. Typically, errors occur because you aren’t using an elevated,
 administrator PowerShell prompt, you haven’t accessed the correct service, or the
service isn’t in a state in which it can be confi gured. Keep in mind that if you alter
the confi guration of required services, the computer might not work as expected.
Because of this, don’t make any changes to services without careful planning and
forethought.

NOTE These commands report only SUCCESS or FAILURE. They won’t tell you that

the service was already started, stopped, or confi gured in the startup mode you’ve

specifi ed.

$s = get-wmiobject -class win32_service –filter "name='dnscache'"
$s.changestartmode("automatic")

__GENUS : 2

__CLASS : __PARAMETERS

__SUPERCLASS :

__DYNASTY : __PARAMETERS

__RELPATH :

__PROPERTY_COUNT : 1

__DERIVATION : {}

__SERVER :

__NAMESPACE :

__PATH :

ReturnValue : 0

 Monitoring and Optimizing Windows Systems CHAPTER 13 393

 A technique for invoking methods of WMI objects we haven’t discussed previ-
ously is using a direct invocation using the Invoke-WMIMethod cmdlet. This cmdlet
provides a one-line alternative to the two-line technique that requires you to get a
WMI object and then invoke its method. For example, instead of using

$s = get-wmiobject -class win32_service –filter "name='dnscache'"
$s.stopservice()

 you can use

invoke-wmimethod -path "win32_service.name='dnscache'" -name stopservice

 Syntax options for Invoke-WmiMethod include the following:

Invoke-WmiMethod [-ComputerName [ComputerNames]] [-Credential
[CredentialObject]] [-Name] [MethodName] [-ThrottleLimit [LimitValue]]
[-AsJob]

Invoke-WmiMethod [-InputObject [WMIObject]] [-Name] [MethodName]
[-ThrottleLimit [LimitValue]] [-AsJob]

Invoke-WmiMethod [-Namespace [WMINamespace]] -Path [WMIPath]
[-ArgumentList [Objects] [-Name] [MethodName] [-ThrottleLimit
[LimitValue]] [-AsJob]

Invoke-WmiMethod [-EnableAllPrivileges] [-Authority [Authority]] [-Name]
[MethodName] [-ThrottleLimit [LimitValue]] [-AsJob]

Invoke-WmiMethod [-Locale [Locale]] [-Name] [MethodName] [-ThrottleLimit
[LimitValue]] [-AsJob]

 You can use the methods of the Win32_Service class and Invoke-WmiMethod to
manage services as shown in the following examples:

START A SERVICE:

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name startservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name startservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name startservice

$s = get-wmiobject -class win32_service –filter "name='dnscache'"
$s.stopservice()

invoke-wmimethod -path "win32_service.name='dnscache'" -name stopservice

Invoke-WmiMethod [-ComputerName [ComputerNames]] [-Credential
[CredentialObject]] [-Name] [MethodName] [-ThrottleLimit [LimitValue]]
[-AsJob]

Invoke-WmiMethod [-InputObject [WMIObject]] [-Name] [MethodName]
[-ThrottleLimit [LimitValue]] [-AsJob]

Invoke-WmiMethod [-Namespace [WMINamespace]] -Path [WMIPath]
[-ArgumentList [Objects] [-Name] [MethodName] [-ThrottleLimit
[LimitValue]] [-AsJob]

Invoke-WmiMethod [-EnableAllPrivileges] [-Authority [Authority]] [-Name]
[MethodName] [-ThrottleLimit [LimitValue]] [-AsJob]

Invoke-WmiMethod [-Locale [Locale]] [-Name] [MethodName] [-ThrottleLimit
[LimitValue]] [-AsJob]

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name startservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name startservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name startservice

CHAPTER 13 Monitoring and Optimizing Windows Systems394

PAUSE A SERVICE:

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name pauseservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name pauseservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name pauseservice

RESUME A PAUSED SERVICE:

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name resumeservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name resumeservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name resumeservice

STOP A SERVICE:

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name stopservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name stopservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name stopservice

Before you stop or pause a service, you should check to see if the service can be
stopped or paused. With Win32_Service objects, the properties you can check are
AcceptPause and AcceptStop.

You can use the techniques discussed previously to work with services when
Get-WmiObject returns a single matching Win32_Service object. However, these
techniques won’t work as expected when Get-WmiObject returns multiple Win32_
Service objects. The reason for this is that the objects are stored in an array, and you
must specify the instance within the array to work with. One technique for doing so
is shown in the following example and partial output:

$servs = get-wmiobject -class win32_service |
where-object {$_.name -match "client"}

foreach ($s in $servs) { $s.changestartmode("automatic") }

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name pauseservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name pauseservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name pauseservice

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name resumeservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name resumeservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name resumeservice

invoke-wmimethod -path "win32_service.name='ServiceName'"
-name stopservice

invoke-wmimethod -path "win32_service.displayname='DisplayName'"
-name stopservice

get-wmiobject -class win32_service -filter "name='ServiceName'" |
invoke-wmimethod -name stopservice

$servs = get-wmiobject -class win32_service |
where-object {$_.name -match "client"}

foreach ($s in $servs) { $s.changestartmode("automatic") }

 Monitoring and Optimizing Windows Systems CHAPTER 13 395

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

 Here, three Win32_Service objects were returned, and each was set to start auto-
matically. This technique will work when there is only one matching service as well.

Managing Computers

 Computers have attributes that you can manage, including names and group
memberships. You can add computer accounts to any container or organizational
unit (OU) in Active Directory. However, the best containers to use are Computers,
Domain Controllers, and any OUs that you’ve created. The standard Windows tool
for working with computer accounts is Active Directory Users And Computers. In
Windows PowerShell, you have many commands, each with a specifi c use. Whether
you are logged on to a Windows Vista, Windows Server 2008, or later version
of Windows, you can use the techniques discussed in this section to manage
 computers.

 Commands for Managing Computers

 Commands you’ll use to manage computers in Windows PowerShell include:

 Add-Computer Adds computers to a domain or workgroup. You can
specify computers by their NetBIOS name, IP address, or fully qualifi ed
domain name. To join a domain, you must specify the name of the domain
to join. In domains, if a computer doesn’t have a domain account, this com-
mand also creates the domain account for the computer. A restart is required
to complete the join operation. To get the results of the command, use the
–Verbose and –PassThru parameters.

Add-Computer [-OUPath ADPath] [-Server Domain\ComputerName]
[[-ComputerName] ComputerNames] [-DomainName] DomainName
[-Unsecure] [-PassThru] [-Reboot] [[-Credential] CredentialObject]

Add-Computer [[-ComputerName] ComputerNames] [-WorkGroupName] Name
[-PassThru] [-Reboot] [[-Credential] CredentialObject]

 Remove-Computer Removes local and remote computers from their cur-
rent workgroup or domain. When you remove a computer from a domain,
Remove-Computer also disables the computer’s domain account. A restart is

ReturnValue : 0

ReturnValue : 0

ReturnValue : 0

Add-Computer [-OUPath ADPath] [-Server Domain\ComputerName]
[[-ComputerName] ComputerNames] [-DomainName] DomainName
[-Unsecure] [-PassThru] [-Reboot] [[-Credential] CredentialObject]

Add-Computer [[-ComputerName] ComputerNames] [-WorkGroupName] Name
[-PassThru] [-Reboot] [[-Credential] CredentialObject]

CHAPTER 13 Monitoring and Optimizing Windows Systems396

required to complete the unjoin operation. For domain computers, you must
provide authentication credentials.

Remove-Computer [[-ComputerName] ComputerNames]
[-PassThru] [-Reboot] [[-Credential] CredentialObject]

 Rename-Computer Renames computers in workgroups and domains.
When you rename a computer in a domain, Rename-Computer also changes
the name in the computer’s domain account. You cannot use Rename-
Computer to rename domain controllers. For remote computers, you must
provide authentication credentials.

Rename-Computer [[-ComputerName] ComputerName] [-NewComputerName]
NewComputerName [-Credential CredentialObject] [-Reboot]

 Restart-Computer Restarts the operating system on local and remote
computers. Use the –Force parameter to force an immediate restart of the
computers.

Restart-Computer [[-ComputerName] ComputerNames] [-AsJob]
[-Authentication AuthType] [[-Credential] CredentialObject]
[-Force] [-Impersonation ImpType] [-ThrottleLimit Limit]

 Stop-Computer Shuts down local or remote computers. The –AsJob
parameter runs the command as a background job, providing the computers
are confi gured for remoting.

Stop-Computer [[-ComputerName] ComputerNames] [-AsJob]
[-Authentication AuthType] [[-Credential] CredentialObject]
[-Force] [-Impersonation ImpType] [-ThrottleLimit Limit]

 Test-Connection Sends Internet Control Message Protocol (ICMP) echo
request packets (pings) to one or more remote computers, and returns the
responses. As long as ICMP is not blocked by a fi rewall, this can help you
determine whether a computer can be contacted across an IP network. You
can specify both the sending and receiving computers. You also can set a
time-out and the number of pings.

Test-Connection [-Count NumPings] [-Delay DelayBetweenPings]
[-TimeToLive MaxTime] [[-Source] SourceComputers] [-Destination]
DestinationComputers

[-AsJob] [-Authentication AuthType] [-BufferSize Size] [-Credential
CredentialObject] [-Impersonation ImpType] [-ThrottleLimit Limit]

Remove-Computer [[-ComputerName] ComputerNames]
[-PassThru] [-Reboot] [[-Credential] CredentialObject]

Rename-Computer [[-ComputerName] ComputerName] [-NewComputerName]
NewComputerName [-Credential CredentialObject] [-Reboot]

Restart-Computer [[-ComputerName] ComputerNames] [-AsJob]
[-Authentication AuthType] [[-Credential] CredentialObject]
[-Force] [-Impersonation ImpType] [-ThrottleLimit Limit]

Stop-Computer [[-ComputerName] ComputerNames] [-AsJob]
[-Authentication AuthType] [[-Credential] CredentialObject]
[-Force] [-Impersonation ImpType] [-ThrottleLimit Limit]

Test-Connection [-Count NumPings] [-Delay DelayBetweenPings]
[-TimeToLive MaxTime] [[-Source] SourceComputers] [-Destination]
DestinationComputers

[-AsJob] [-Authentication AuthType] [-BufferSize Size] [-Credential
CredentialObject] [-Impersonation ImpType] [-ThrottleLimit Limit]

 Monitoring and Optimizing Windows Systems CHAPTER 13 397

 You’ll usually want to run these commands at an elevated, administrator
 PowerShell prompt. Regardless, you also might need to provide the appropriate
credentials, and you can do this as shown in the following example:

$cred = get-credential
add-computer –domainname cpandl–credential $cred

 When you use Get-Credential, PowerShell prompts you for a user name and
password and then stores the credentials provided in the $cred variable. These
credentials are then used for authentication.

 When you test a connection to a computer, restart a computer, or stop a com-
puter, note the following:

 The –Authentication parameter sets the authentication level for the WMI
connection to the computer. The default value is Packet. Valid values are
Unchanged (the authentication level is the same as the previous command),
Default (Windows Authentication), None (no COM authentication), Connect
(Connect-level COM authentication), Call (Call-level COM authentication),
Packet (Packet-level COM authentication), PacketIntegrity (Packet Integrity–
level COM authentication), and PacketPrivacy (Packet Privacy–level COM
authentication).

 The –Impersonation parameter sets the impersonation level to use when
establishing the WMI connection. The default value is Impersonate. Valid
values are Default (default impersonation), Anonymous (hides the identity of
the caller), Identify (allows objects to query the credentials of the caller), and
Impersonate (allows objects to use the credentials of the caller).

 As you can see, the default authentication technique is to use Packet-level COM
authentication, and the default impersonation technique is to use the credentials
of the caller. Most of the time, these are what you’ll want to use. Occasionally, you
might want to use Windows Authentication rather than COM authentication. To do
this, set the –Authentication parameter to Default.

 Test-Connection is the same as Ping. With Test-Connection, you can determine
whether you can connect to a computer by its name or IP address. To test the IPv4
address 192.168.10.55, you use the following command:

test-connection 192.168.10.55

 To test the IPv6 address FEC0::02BC:FF:BECB:FE4F:961D, you use the following
command:

test-connection FEC0::02BC:FF:BECB:FE4F:961D

$cred = get-credential
add-computer –domainname cpandl–credential $cred

test-connection 192.168.10.55

test-connection FEC0::02BC:FF:BECB:FE4F:961D

CHAPTER 13 Monitoring and Optimizing Windows Systems398

If you receive a successful reply from Test-Connection, Test-Connection was
able to connect to the computer. If you receive a time-out or “Unable to Connect”
error, Test-Connection was unable to connect to the computer either because the
computer was disconnected from the network, the computer was shut down, or the
connection was blocked by a fi rewall.

Renaming Computer Accounts

Using Rename-Computer, you can easily rename workstations and member servers.
If the workstation or member server is joined to a domain, the computer’s account
is renamed as well. You should not, however, use Rename-Computer to rename do-
main controllers, servers running Certifi cate Services, or servers running any other
services that require a specifi c, fi xed server name.

You can rename a workstation or member server using the following command
syntax:

rename-computer –ComputerName ComputerName –NewComputerName NewName
-reboot

where ComputerName is the current name of the computer, and NewName is the
new name for the computer. If you are renaming the local computer, you omit the
–ComputerName parameter as shown in the following example:

rename-computer –NewComputerName TechPC12 -reboot

Here, you rename the local computer TechPC12. Because a reboot is required
to complete the renaming, you specify that you want to reboot the computer after
renaming it. If you need to specify credentials to rename a computer, you can do so
as shown in the following example:

$cred = get-credential
rename-computer –NewComputerName TechPC12 –credential $cred –reboot

Joining Computers to a Domain

Any authenticated user can join a computer to a domain using Add-Computer. If the
related computer account hasn’t been created, running Add-Computer also creates
the computer account. When a computer joins a domain, the computer establishes
a trust relationship with the domain. The computer’s security identifi er is changed to
match that of the related computer account in Active Directory, and the computer is
made a member of the appropriate groups in Active Directory. Typically, this means
the computer is made a member of the Domain Computers group. If the computer
is later made a domain controller, the computer will be made a member of the
 Domain Controllers group instead.

rename-computer –NewComputerName TechPC12 -reboot

$cred = get-credential
rename-computer –NewComputerName TechPC12 –credential $cred –reboot

 Monitoring and Optimizing Windows Systems CHAPTER 13 399

 REAL WORLD Before trying to join a computer to a domain, you should verify the

computer’s network confi guration. If the network confi guration is not correct, you will

need to modify the settings before attempting to join the computer to the domain.

Additionally, if the computer account was created previously, only a user specifi cally

delegated permission or an administrator can join the computer to a domain. Users

must also have local administrator permissions on the local computer.

 When logged on to the computer you want to join to a domain, you can use
Add-Computer to simultaneously join a computer to a domain and create a com-
puter account in the domain with the following command syntax:

add-computer –DomainName DomainName –reboot

 where DomainName is the name of the Active Directory domain to join. Because
you must reboot the computer to complete the join operation, you typically will
want to include the –Reboot parameter. This isn’t required, however. If you don’t
specify the organizational unit to use, the default organizational unit is used.
 Consider the following example:

$cred = get-credential
add-computer –domainname cpandl –credential $cred –reboot

 Here, you join the local computer to the cpandl.com domain and create the re-
lated computer account in the default Computers container. If the computer’s name
is TechPC85, the full path to this computer object is CN=TechPC85,CN=Computers,
DC=cpandl,DC=com.

 TIP Add the –PassThru and –Verbose parameters to get detailed results. Addition-

ally, when you join a computer to a domain, you can specify the domain controller to

use with the –Server parameter. Specify the server name in Domain\ComputerName

format, such as CPANDL\DcServer14. If you don’t specify the domain controller to use,

any available domain controller is used.

 Additionally, you can use the –OUPath parameter to specify the distinguished
name of the OU into which the computer account should be placed. Consider the
following example:

$cred = get-credential
add-computer –domainname cpandl –outpath ou=engineering,dc=cpandl,dc=com
–credential $cred -reboot

 Here, you join the local computer to the cpandl.com domain and create the re-
lated computer account in the Engineering OU. If the computer’s name is TechPC85,
the full path to this computer object is CN=TechPC85,OU=Engineering,DC=cpandl,
DC=com.

$cred = get-credential
add-computer –domainname cpandl –credential $cred –reboot

$cred = get-credential
add-computer –domainname cpandl –outpath ou=engineering,dc=cpandl,dc=com
–credential $cred -reboot

CHAPTER 13 Monitoring and Optimizing Windows Systems400

When running Add-Computer from another computer and connecting to the
computer you want to join to a domain, you use the following command syntax:

add-computer –DomainName DomainName –computername ComputerNames -reboot

where DomainName is the name of the Active Directory domain to join and
ComputerNames is a comma-separated list of computers joining the domain. As
before, this command creates the related computer account if necessary and you
optionally can use the –OUPath parameter to specify the distinguished name of the
OU into which the computer account should be placed.

Consider the following example:

$cred = get-credential
add-computer –domainname cpandl –computername EngPC14, EngPC17 –outpath
ou=engineering,dc=cpandl,dc=com –credential $cred -reboot

Here, you join EngPC14 and EngPC15 to the cpandl.com domain and create the
related computer account in the Engineering OU.

You can read the list of computers to join to a domain from a fi le as well. Here is
an example:

add-computer –domainname cpandl –computername (get-content
c:\data\clist.txt)

Here, you add the computers listed in the C:\Data\CList.txt fi le to the cpandl.com
domain. If you are renaming the local computer as well as other computers, you can
type “.” or “localhost” as the computer name.

Adding Computers to a Workgroup

In addition to using Add-Computer to add computers to domains, you can use
Add-Computer to add computers to workgroups. To add the local computer to a
specifi ed workgroup, use the following syntax:

add-computer –WorkgroupName WorkgroupName –reboot

where WorkgroupName is the name of the workgroup to join. Because you must re-
boot the computer to complete the join operation, you typically will want to include
the –Reboot parameter. This isn’t required, however.

 Consider the following example:

$cred = get-credential
add-computer –workgroupname testing –credential $cred –reboot

 Here, you join the local computer to the Testing workgroup. Add the –PassThru
and –Verbose parameters to get detailed results.

$cred = get-credential
add-computer –domainname cpandl –computername EngPC14, EngPC17 –outpath
ou=engineering,dc=cpandl,dc=com –credential $cred -reboot

add-computer –domainname cpandl –computername (get-content
c:\data\clist.txt)

$cred = get-credential
add-computer –workgroupname testing –credential $cred –reboot

 Monitoring and Optimizing Windows Systems CHAPTER 13 401

 When running Add-Computer from another computer and connecting to the
computer you want to join to a workgroup, you use the following command syntax:

add-computer –WorkgroupName WorkgroupName –computername ComputerNames
-reboot

 where WorkgroupName is the name of the workgroup to join, and ComputerNames
is a comma-separated list of computers joining the domain.

 Consider the following example:

$cred = get-credential
add-computer –workgroupname testing –computername TestPC11, TestPC12
–credential $cred -reboot

 Here, you join TestPC11 and TestPC12 to the Testing workgroup.

 You can read the list of computers to join to a workgroup from a fi le as well.
Here is an example:

add-computer –workgroupname testing –computername (get-content
c:\data\clist.txt)

 Here, you add the computers listed in the C:\Data\CList.txt fi le to the Testing
workgroup. If you are renaming the local computer as well as other computers, you
can type “.” or “localhost” as the computer name.

 Removing Computers from Domains and Workgroups

 Only authorized users can remove a computer from a domain or workgroup. Re-
moving a computer from a domain disables the computer account in the domain
and breaks the trust relationship between the computer and the domain. The com-
puter’s security identifi er is changed to match that of a computer in a workgroup.
The computer then joins the default workgroup, called Workgroup.

 You remove computers from a domain or workgroup using Remove-Computer.
Consider the following example:

$cred = get-credential
remove-computer –credential $cred –reboot

 Here, you remove the local computer from its current domain or workgroup and
make it a member of the default workgroup, Workgroup.

 When running Add-Computer from another computer and connecting to the
computer you want to manage, you use the following command syntax:

remove-computer –computername ComputerNames -reboot

 where ComputerNames is a comma-separated list of computers to remove from
domains or workgroups.

$cred = get-credential
add-computer –workgroupname testing –computername TestPC11, TestPC12
–credential $cred -reboot

add-computer –workgroupname testing –computername (get-content
c:\data\clist.txt)

$cred = get-credential
remove-computer –credential $cred –reboot

CHAPTER 13 Monitoring and Optimizing Windows Systems402

Consider the following example:

$cred = get-credential
remove-computer –computername TestPC11, TestPC12 –credential $cred
-reboot

Here, you remove TestPC11 and TestPC12 from their current domain or work-
group and make them members of the default workgroup, Workgroup.

Managing the Restart and Shutdown of Computers

You’ll often fi nd that you need to shut down or restart systems. One way to do this
is to run Shutdown-Computer or Restart-Computer at the PowerShell prompt, which
you can use to work with both local and remote systems. Another way to manage
system shutdown or restart is to schedule a shutdown. Here, you can use the
Schtasks utility to specify when shutdown should be run, or you can create a script
with a list of shutdown commands for individual systems.

 Although Windows systems usually start up and shut down without problems,
they can occasionally stop responding during these processes. If this happens, try to
determine the cause. Some of the reasons systems might stop responding include
the following:

 The system is attempting to execute or is running a startup or shutdown
script that has not completed or is itself not responding (and in this case, the
system might be waiting for the script to time out).

 A startup initialization fi le or service might be the cause of the problem
and, if so, you might need to troubleshoot startup items using the System
Confi guration (Msconfi g) utility. Disabling a service, startup item, or entry in
a startup initialization fi le might also solve the problem.

 The system might have an antivirus program that is causing the problem.
In some cases, the antivirus program might try to scan the fl oppy disk drive
when you try to shut down the system. To resolve this, confi gure the antivirus
software so that it doesn’t scan the fl oppy drive or other drives with remov-
able media on shutdown. You can also try temporarily disabling or turning
off the antivirus program.

 Improperly confi gured sound devices can cause startup and shutdown
problems. To determine what the possible source is, examine each of these
devices in turn. Turn off sound devices and then restart the computer. If the
problem clears up, you have to install new drivers for the sound devices you
are using, or you might have a corrupted Start Windows or Exit Windows
sound fi le.

 Improperly confi gured network cards can cause startup and shutdown prob-
lems. Try turning off the network adapter and restarting. If that works, you
might need to remove and then reinstall the adapter’s driver or obtain a new
driver from the manufacturer.

$cred = get-credential
remove-computer –computername TestPC11, TestPC12 –credential $cred
-reboot

 Monitoring and Optimizing Windows Systems CHAPTER 13 403

 Improperly confi gured video adapter drivers can cause startup and shut-
down problems. From another computer, remotely log on and try to roll
back the current video drivers to a previous version. If that’s not possible, try
uninstalling and then reinstalling the video drivers.

 When logged on to the computer you want to restart or shut down, you can
type restart-computer or stop-computer to restart or shut down the computer,
respectively. To force an immediate restart or shutdown, add the –Force parameter.

 When running Restart-Computer or Stop-Computer from another computer
and connecting to the computer you want to restart or stop, you use the following
command syntax:

restart-computer –computername ComputerNames

 or

stop-computer –computername ComputerNames

 where ComputerNames is a comma-separated list of computers to restart or stop.
As before, you can use the –Force parameter to force a restart or shutdown. You
also might need to specify credentials. You can do that as shown in this example:

$cred = get-credential
stop-computer –computername TestPC11, TestPC12 –credential $cred

 Here, you shut down TestPC11 and TestPC12 using specifi c credentials.

 You can read the list of computers to restart or shut down from a fi le as well.
Here is an example:

$cred = get-credential
restart-computer –computername (get-content c:\data\clist.txt)
–credential $cred -force

 Here, you restart the computers listed in the C:\Data\CList.txt fi le using specifi c
credentials.

Creating and Using System Restore Checkpoints

 With System Restore enabled, a computer makes periodic snapshots of the sys-
tem confi guration. These snapshots are called restore points. These restore points
include Windows settings, lists of programs that have been installed, and so on. If
the computer has problems starting or isn’t working properly because of a system
confi guration change, you can use a restore point to restore the system confi gu-
ration to the point at which the snapshot was made. For example, suppose your
system is working fi ne and then you install a new service pack release for Microsoft
Offi ce. Afterward, the computer generates errors, and Offi ce applications won’t run.
You try to uninstall the update, but that doesn’t work, so you decide to run System

$cred = get-credential
stop-computer –computername TestPC11, TestPC12 –credential $cred

$cred = get-credential
restart-computer –computername (get-content c:\data\clist.txt)
–credential $cred -force

 CHAPTER 13 Monitoring and Optimizing Windows Systems404

Restore. Using System Restore, you can restore the system using a snapshot taken
before the update.

System Restore automatically creates several types of restore points. These
include the following:

 Scheduled Checkpoints scheduled by the operating system and occurring
at regular intervals

 Windows Update Checkpoints created before applying Windows updates

 Application Install Checkpoints created before installing applications

 Application Uninstall Checkpoints created before uninstalling
 applications

 Device Install Checkpoints created before installing devices

 Device Uninstall Checkpoints created before uninstalling devices

You should create restore points manually before performing an operation that
might cause problems on the system.

System Restore manages restore points on a per-drive basis. Each drive with
critical applications and system files should be monitored for configuration changes.
By default, System Restore is enabled only for the System drive. You can modify the
System Restore configuration by turning on monitoring of other drives as needed.
If a drive isn’t configured for System Restore monitoring, configuration changes are
not tracked, and the disk cannot be recovered if problems occur.

In Windows Vista and later desktop versions of Windows, previous versions of
files and folders are created automatically as part of a restore point. Any file or
folder that was modified since the last restore point is saved and made available
as a previous version. The only exceptions are for system files and folders. Previous
 versions are not available for system folders, such as C:\Windows.

You can use previous versions of files to restore files that were inadvertently
modified, deleted, or damaged. When System Restore is enabled on a drive, compli-
ant versions of Windows automatically make daily copies of files and folders that
have changed on that drive. You can also create copies of files and folders that have
changed by setting a restore point.

NOTE Protection points are created daily for all drives being monitored by System

Restore. However, only versions of files that are actually different from the current

version are stored as previous versions. You can enable or disable previous versions

on a per-drive basis by enabling or disabling System Restore on that drive. Previous

versions are saved as part of a volume’s automatically or manually created protection

points.

Commands for Configuring System Restore

At an elevated, administrator PowerShell prompt, you can view and work with
System Restore using the following commands:

 Monitoring and Optimizing Windows Systems CHAPTER 13 405

 Enable-ComputerRestore Turns on the System Restore feature on one or
more fi xed, internal drives. You cannot enable System Restore on external or
network drives.

Enable-ComputerRestore [-Drive] DriveStrings

 Disable-ComputerRestore Turns off the System Restore feature on one or
more fi le system drives. As a result, attempts to restore the computer do not
affect the specifi ed drive.

Disable-ComputerRestore [-Drive] DriveStrings

 Get-ComputerRestorePoint Gets one or more restore points on the local
computer, or displays the status of the most recent attempt to restore the
computer.

Get-ComputerRestorePoint [-RestorePoint] SequenceNumber
Get-ComputerRestorePoint -LastStatus

 Checkpoint-Computer Creates a system restore point on the local
computer. The –RestorePointType parameter optionally specifi es the type of
restore point.

Checkpoint-Computer [[-RestorePointType] Type] [-Description]
Description

 Restore-Computer Restores the local computer to the specifi ed system
restore point. A restart of the computer is performed to complete the
restore. The –RestorePoint parameter specifi es the sequence number of the
restore point.

Restore-Computer [-RestorePoint] SequenceNumber

 The system process responsible for monitoring confi guration and application
changes is the System Restore service. This service is confi gured for automatic start-
up and runs under the Local System account. System Restore won’t work properly if
this service isn’t running or confi gured appropriately.

 System Restore saves system checkpoint information for all monitored drives
and requires at least 300 MB of disk space on the System volume to save restore
points. System Restore reserves additional space for restore points as necessary, up
to 10 percent of the total disk capacity, but this additional space is always available
for user and application storage. System Restore frees up additional space for you
as necessary. If System Restore runs out of available space, the operating system
overwrites previously created restore points.

Enable-ComputerRestore [-Drive] DriveStrings

Disable-ComputerRestore [-Drive] DriveStrings

Get-ComputerRestorePoint [-RestorePoint] SequenceNumber
Get-ComputerRestorePoint -LastStatus

Checkpoint-Computer [[-RestorePointType] Type] [-Description]
Description

Restore-Computer [-RestorePoint] SequenceNumber

CHAPTER 13 Monitoring and Optimizing Windows Systems406

Enabling and Disabling System Restore

You can enable System Restore for a volume using Enable-ComputerRestore. The
basic syntax is

Enable-ComputerRestore [-Drive] DriveStrings

With the –Drive parameter, specify one or more drive letters, each followed by a
colon and a backslash and enclosed in quotation marks, as shown in the following
example:

enable-computerrestore –drive "C:\", "D:\"

To enable System Restore on any drive, it must be enabled on the system drive,
either fi rst or concurrently. When you enable System Restore, restore points are
 created automatically as discussed previously.

You can disable System Restore for a volume using Disable-ComputerRestore.
The basic syntax is

Disable-ComputerRestore [-Drive] DriveStrings

With the –Drive parameter, specify one or more fi le system drive letters, each
followed by a colon and a backslash and enclosed in quotation marks, as shown in
the following example:

disable-computerrestore –drive "C:\", "D:\"

You cannot disable System Restore on the System volume without disabling
System Restore on all other volumes.

Although these commands don’t support the –ComputerName parameter,
you can use the remoting techniques discussed in Chapter 6, “Mastering Aliases,
Functions, and Objects,” to invoke System Restore–related commands on remote
computers. Here is an example:

invoke-command -computername techpc24 -scriptblock
{ enable-computerrestore -drive "C:\", "D:\" }

Here, you enable System Restore on the C and D drives of TechPC25.

Creating and Using Checkpoints

You can manually create a restore point by typing checkpoint-computer followed
by a description of the checkpoint. Consider the following example:

checkpoint-computer "Modify PowerShell"

 Here, you create a “Modify PowerShell” checkpoint. Windows PowerShell displays
a progress bar while the restore point is being created. Optionally, you can specify

enable-computerrestore –drive "C:\", "D:\"

disable-computerrestore –drive "C:\", "D:\"

invoke-command -computername techpc24 -scriptblock
{ enable-computerrestore -drive "C:\", "D:\" }

checkpoint-computer "Modify PowerShell"

 Monitoring and Optimizing Windows Systems CHAPTER 13 407

the type of restore point using the –RestorePointType parameter. The default is
 APPLICATION_INSTALL. Valid values are as follows:

 APPLICATION_INSTALL, for when you are planning to install an application

 APPLICATION_UNINSTALL, for when you are planning to uninstall an
 application

 DEVICE_DRIVER_INSTALL, for when you are planning to modify device drivers

 MODIFY_SETTINGS, for when you are planning to modify confi guration
 settings

 You can use Get-ComputerRestorePoint to list all available restore points or a
specifi c restore point by its sequence number. The sequence number is simply an
 incremented value that makes it possible to track a specifi c instance of a restore point.

 To list all available restore points, type get-computerrestorepoint, as shown in
the following example and sample output:

get-computerrestorepoint

CreationTime Description SequenceNumber EventType RestorePointType

------------ ----------- -------------- --------- ----------------

1/22/2009 9:56:36 AM Windows Update 287 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

1/23/2009 11:30:46 AM Windows Update 288 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

1/23/2009 11:38:24 AM Windows Update 289 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

 From the output, you can see restore points are listed by creation time, descrip-
tion, sequence number, event type, and restore point type. Once you identify a
restore point that you want to work with, note its sequence number. Using the
–RestorePoint parameter, you can get that specifi c restore point. In this example,
you get restore point 289:

get-computerrestorepoint 289

 As each value returned for a restore point is set in a like-named property, you
can fi lter the output of Get-ComputerRestorePoint using Where-Object. In the
 following example, you get all restore points created in the last three days:

$date = (get-date).adddays(-3)
get-computerrestorepoint | where-object {$_.creationtime –gt $date}

 In the following example, you get restore points with a specifi c description:

get-computerrestorepoint | where-object {$_.description –eq
"Modify PowerShell"}

get-computerrestorepoint

CreationTime Description SequenceNumber EventType RestorePointType

------------ ----------- -------------- --------- ----------------

1/22/2009 9:56:36 AM Windows Update 287 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

1/23/2009 11:30:46 AM Windows Update 288 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

1/23/2009 11:38:24 AM Windows Update 289 BEGIN_SYSTEM_C...

APPLICATION_INSTALL

get-computerrestorepoint 289

$date = (get-date).adddays(-3)
get-computerrestorepoint | where-object {$_.creationtime –gt $date}

get-computerrestorepoint | where-object {$_.description –eq
"Modify PowerShell"}

CHAPTER 13 Monitoring and Optimizing Windows Systems408

To get restore points by description, you need to know the numeric value that
denotes a specifi c type. These values include the following:

 0 for application install checkpoints, which include Windows Update check
points

 1 for application uninstall checkpoints

 7 for scheduled checkpoints

 10 for device driver install checkpoints

 12 for modify settings checkpoints

In the following example, you get all restore points for application installs:

get-computerrestorepoint | where-object {$_.restorepointtype –eq 0}

Recovering from Restore Points

To recover a computer from a restore point, type restore-computer followed by the
sequence number of the restore point to restore. Use Get-Computer RestorePoint to
display a list of available restore points by their sequence number if necessary. In the
following example, you initiate a restore of the computer using restore point 353:

restore-computer 353

Here, you initiate a restore of EngPC85 to restore point 276:

invoke-command -computername engpc85 -scriptblock
{ restore-computer 276 }

During the restoration, System Restore shuts down the computer. After the
restore is complete, the computer is restarted using the settings from the date and
time of the snapshot. After the computer restarts, you can type get-computer-

restorepoint -laststatus to check the status of the restore operation. Read
the message provided to confi rm the restore was successful. If the restore was
 unsuccessful, this is stated explicitly, such as

The last restore was interrupted.

 If Windows isn’t working properly after a restore, you can apply a different
restore point or reverse the restore operation by repeating this procedure and
 selecting the restore point that was created automatically before applying the
 current system state.

get-computerrestorepoint | where-object {$_.restorepointtype –eq 0}

restore-computer 353

invoke-command -computername engpc85 -scriptblock
{ restore-computer 276 }

The last restore was interrupted.

409

CHAP TER 14

Fine-Tuning System
 Performance

Managing Applications, Processes, and Performance 409

Performance Monitoring 430

Detecting and Resolving Performance Issues Through Monitoring 436

In the previous chapter, I discussed techniques for monitoring and optimizing
Windows systems. Monitoring is the process by which systems are regularly

checked for problems. Optimization is the process of fine-tuning system
 performance to maintain or achieve its optimal capacity. Now that you know the
essentials for monitoring and optimization, let’s dig deeper and look at techniques
that you can use to:

 Manage applications, processes, and performance.

 Monitor and maintain a computer’s performance.

 Detect and resolve performance issues.

Managing Applications, Processes, and Performance

An important part of every administrator’s job is to monitor network systems and
ensure that everything is running smoothly—or as smoothly as can be expected,
anyway. As you learned in the previous chapter, watching the event logs closely
can help you detect and track problems with applications, security, and essential
services. Often when you detect or suspect a problem, you’ll need to dig deeper to
search out the cause of the problem and correct it. If you’re fortunate, by pinpoint-
ing the cause of a problem, you can prevent it from happening again.

Whenever the operating system or a user starts a service, runs an application, or
executes a command, Windows starts one or more processes to handle the related

CHAPTER 14 Fine-Tuning System Performance410

program. Several commands are available to help you manage and monitor programs.
These commands include the following:

 Debug-Process Debugs one or more processes running on the local
 computer.

Debug-Process [-Id] ProcessIDs | -InputObject Objects | -Name Names

 Get-Process Lists all running processes by name and process ID. The list
includes information on memory usage.

Get-Process -Id ProcessIDs | -InputObject Objects | [[-Name] Names]
[-ComputerName ComputerNames] [-FileVersionInfo] [-Module]

 Start-Process Starts one or more processes on the local computer. To
specify the program that runs in the process, enter the path to an executable
fi le or script fi le. Alternatively, you can specify a fi le that can be opened in a
 program, such as a Microsoft Offi ce Word document or Offi ce Excel work-
sheet. If you specify a nonexecutable fi le, Start-Process starts the program
that is associated with the fi le by using the default action. Typically, the default
action is Open. You can set the action to take using the –Verb parameter.

Start-Process [-Verb {Edit|Open|Print|...}] [-WorkingDirectory
DirectoryPath] [[-ArgumentList] Args] [-FilePath] PathToExeOrDoc

[-Credential CredentialObject] [-LoadUserProfile {$True|$False}]
[-NoNewWindow] [-PassThru] [-RedirectStandardError FilePath]
[-RedirectStandardInput FilePath] [-RedirectStandardOutput
FilePath] [-UseNewEnvironment] [-Wait] [-WindowStyle
{Normal|Hidden|Minimized|Maximized}]

 Stop-Process Stops running processes by name or process ID. Using fi lters,
you can also halt processes by process status, session number, CPU time,
memory usage, and more.

Stop-Process [-Id] ProcessIDs | -InputObject Objects | -Name Names
[-Force] [-PassThru]

 Wait-Process Waits for a specifi ed process to be stopped before accepting
more input.

Wait-Process -Id ProcessIDs | -InputObject Objects | [-Name] Names
[[-TimeOut] WaitTime]

 In the sections that follow, you’ll fi nd detailed discussions on how these commands
are used. First, however, let’s look at the ways processes are run and the common
problems you might encounter when working with them.

Debug-Process [-Id] ProcessIDs | -InputObject Objects | -Name Names

Get-Process -Id ProcessIDs | -InputObject Objects | [[-Name] Names]
[-ComputerName ComputerNames] [-FileVersionInfo] [-Module]

Start-Process [-Verb {Edit|Open|Print|...}] [-WorkingDirectory
DirectoryPath] [[-ArgumentList] Args] [-FilePath] PathToExeOrDoc

[-Credential CredentialObject] [-LoadUserProfile {$True|$False}]
[-NoNewWindow] [-PassThru] [-RedirectStandardError FilePath]
[-RedirectStandardInput FilePath] [-RedirectStandardOutput
FilePath] [-UseNewEnvironment] [-Wait] [-WindowStyle
{Normal|Hidden|Minimized|Maximized}]

Stop-Process [-Id] ProcessIDs | -InputObject Objects | -Name Names
[-Force] [-PassThru]

Wait-Process -Id ProcessIDs | -InputObject Objects | [-Name] Names
[[-TimeOut] WaitTime]

 Fine-Tuning System Performance CHAPTER 14 411

Understanding System and User Processes

When you want to examine processes that are running on a local or remote system,
you can use Get-Process and other commands. With Get-Process, you can obtain the
process ID, status, and other important information about processes running on a sys-
tem. You also can use filters to include or exclude processes from Get-Process queries.
To dig deeper, you can use the Win32_Process and Win32_Service classes.

Generally, processes that the operating system starts are referred to as system
processes; processes that users start are referred to as user processes. Most user pro-
cesses are run in interactive mode. That is, a user starts a process interactively with the
keyboard or mouse. If the application or program is active and selected, the related
interactive process has control over the keyboard and mouse until you switch control
by terminating the program or selecting a different one. When a process has control,
it’s said to be running “in the foreground.”

Processes can also run in the background, independently of user logon sessions.
Background processes do not have control over the keyboard, mouse, or other input
devices and are usually run by the operating system. Using the Task Scheduler, users
can run processes in the background as well, however, and these processes can oper-
ate regardless of whether the user is logged on. For example, if Task Scheduler starts
a scheduled task while the user is logged on, the process can continue even when the
user logs off.

Windows tracks every process running on a system by image name, process ID,
priority, and other parameters that record resource usage. The image name is the
name of the executable that started the process, such as Msdtc.exe or Svchost.exe.
The process ID is a numeric identifier for the process, such as 1160. The base priority
is an indicator of how much of the system’s resources the process should get relative
to other running processes. With priority processing, a process with a higher-priority
gets preference over processes with lower priority, and the higher-priority process
might not have to wait to get processing time, access memory, or work with the
file system. A process with lower priority, on the other hand, usually must wait for a
higher-priority process to complete its current task before gaining access to the CPU,
memory, or the file system.

In a perfect world, processes would run perfectly and would never have problems.
The reality is, however, that problems occur and they often appear when you least
want them to. Common problems include the following:

 Processes become nonresponsive, such as when an application stops pro-
cessing requests. When this happens, users might tell you that they can’t
access a particular application, that their requests aren’t being handled, or
that they were kicked out of the application.

 Processes fail to release the CPU, such as when you have a runaway process
that is using up CPU time. When this happens, the system might appear to
be slow or nonresponsive because the runaway process is hogging processor
time and is not allowing other processes to complete their tasks.

CHAPTER 14 Fine-Tuning System Performance412

 Processes use more memory than they should, such as when an application
has a memory leak. When this happens, processes aren’t properly releasing
memory that they’re using. As a result, the system’s available memory might
gradually decrease over time and, as the available memory gets low, the
system might be slow to respond to requests or it might become nonre-
sponsive. Memory leaks can also make other programs running on the same
system behave erratically.

In most cases, when you detect these or other problems with system processes,
you’ll want to stop the process and start it again. You’ll also want to examine the
event logs to see whether you can determine the cause of the problem. In the case
of memory leaks, you'll want to report the memory leak to the developers and see
whether an update that resolves the problem is available.

A periodic restart of an application with a known memory leak is often useful.
Restarting the application should allow the operating system to recover any lost
memory.

Examining Running Processes

To get a list of all processes running on a system, type get-process at the command
prompt as shown in the following example and sample output:

get-process –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 127 4 13288 16708 59 1240 audiodg

 696 6 1872 5248 94 588 csrss

 495 7 21912 19672 155 644 csrss

 95 4 3160 6572 75 0.08 2752 CtHelper

 134 5 3808 7900 77 0.08 2708 Ctxfihlp

 189 5 9160 8764 72 0.22 3044 CTxfispi

 58 2 1236 4244 45 0.31 3260 ehmsas

 Because the –ComputerName parameter accepts multiple name values, you can
check the status of processes on multiple computers simply by typing the names of
the computers to check in a comma-separate list as shown in the following example:

get-process –computername fileserver86, dcserver22, printserver31

 Rather than type computer names each time, you can type computer names on
separate lines in a text fi le and then get the list of computer names from the text fi le
as shown in the following example:

get-process -computername (get-content c:\data\clist.txt)

get-process –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 127 4 13288 16708 59 1240 audiodg

 696 6 1872 5248 94 588 csrss

 495 7 21912 19672 155 644 csrss

 95 4 3160 6572 75 0.08 2752 CtHelper

 134 5 3808 7900 77 0.08 2708 Ctxfihlp

 189 5 9160 8764 72 0.22 3044 CTxfispi

 58 2 1236 4244 45 0.31 3260 ehmsas

get-process –computername fileserver86, dcserver22, printserver31

get-process -computername (get-content c:\data\clist.txt)

 Fine-Tuning System Performance CHAPTER 14 413

 Here, you get the list of remote computers to check from a fi le called Clist.txt in
the C:\Data directory.

 When you are looking for a specifi c process, you can reference the process by its
process name or process ID. To match partial names, you can use wildcard characters
as shown in the following example and sample output:

get-process win* –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 106 4 1560 4192 46 636 wininit

 143 4 2516 6692 56 804 winlogon

 485 26 45992 69220 441 83.34 5200 WINWORD

 Here, you look for all processes where the process name begins with win.

 Get-Process returns objects representing each process matching the criteria you
specify. As you can see from previous examples and sample output, the standard
output includes:

 CPU An alias for TotalProcessorTime.TotalSeconds. This item shows the
number of seconds of CPU time the process has used.

 Handles An alias for the HandleCount property. This item shows the num-
ber of fi le handles maintained by the process.

 NPM An alias for the NonpagedSystemMemorySize property. This item
shows the amount of virtual memory for a process that cannot be written to
disk.

 PM An alias for the PagedMemorySize property. This item shows the
amount of committed virtual memory for a process that can be written to
disk.

 VM An alias for the VirtualMemorySize property. This item shows the
amount of virtual memory allocated to and reserved for a process.

 WS An alias for the WorkingSet property. This item shows the amount of
memory the process is currently using, including both the private working
set and the nonprivate working set.

 Id The process identifi cation number.

 ProcessName The name of the process or executable running the process.

 As you examine processes, keep in mind that a single application might start mul-
tiple processes. Generally, these processes are dependent on the central application
process, and from this main process a process tree containing dependent processes
is formed. When you terminate processes, you’ll usually want to target the main
application process or the application itself rather than dependent processes. This
 approach ensures that the application is stopped cleanly.

get-process win* –computername fileserver86

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 106 4 1560 4192 46 636 wininit

 143 4 2516 6692 56 804 winlogon

 485 26 45992 69220 441 83.34 5200 WINWORD

CHAPTER 14 Fine-Tuning System Performance414

To view all of the available properties, you need to format the output as a list, as
shown in the following example and partial output:

get-process winword -computername server12 | format-list *

Name : WINWORD

Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

Company : Microsoft Corporation

CPU : 121.046875

FileVersion : 11.0.8237

ProductVersion : 11.0.8237

Description : Microsoft Office Word

Product : Microsoft Office 2003

Id : 5200

PriorityClass : Normal

HandleCount : 491

WorkingSet : 73142272

PagedMemorySize : 47992832

PrivateMemorySize : 47992832

VirtualMemorySize : 463138816

TotalProcessorTime : 00:02:01.0468750

BasePriority : 8

Handle : 2752

MachineName : server12

MainWindowHandle : 1573996

MainWindowTitle : process.doc - Microsoft Word

MainModule : System.Diagnostics.ProcessModule (WINWORD.EXE)

MaxWorkingSet : 1413120

MinWorkingSet : 204800

Modules : {System.Diagnostics.ProcessModule (WINWORD.

EXE), System.Diagnostics.ProcessModule (ntdll.dll),...}

NonpagedSystemMemorySize : 27312

NonpagedSystemMemorySize64 : 27312

PagedMemorySize64 : 47992832

PagedSystemMemorySize : 754224

PagedSystemMemorySize64 : 754224

PeakPagedMemorySize : 48001024

PeakPagedMemorySize64 : 48001024

PeakWorkingSet : 73150464

PeakWorkingSet64 : 73150464

PeakVirtualMemorySize : 464146432

PeakVirtualMemorySize64 : 464146432

PriorityBoostEnabled : True

PrivateMemorySize64 : 47992832

PrivilegedProcessorTime : 00:00:36.2343750

ProcessName : WINWORD

ProcessorAffinity : 15

Responding : True

SessionId : 1

get-process winword -computername server12 | format-list *

Name : WINWORD

Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

Company : Microsoft Corporation

CPU : 121.046875

FileVersion : 11.0.8237

ProductVersion : 11.0.8237

Description : Microsoft Office Word

Product : Microsoft Office 2003

Id : 5200

PriorityClass : Normal

HandleCount : 491

WorkingSet : 73142272

PagedMemorySize : 47992832

PrivateMemorySize : 47992832

VirtualMemorySize : 463138816

TotalProcessorTime : 00:02:01.0468750

BasePriority : 8

Handle : 2752

MachineName : server12

MainWindowHandle : 1573996

MainWindowTitle : process.doc - Microsoft Word

MainModule : System.Diagnostics.ProcessModule (WINWORD.EXE)

MaxWorkingSet : 1413120

MinWorkingSet : 204800

Modules : {System.Diagnostics.ProcessModule (WINWORD.

EXE), System.Diagnostics.ProcessModule (ntdll.dll),...}

NonpagedSystemMemorySize : 27312

NonpagedSystemMemorySize64 : 27312

PagedMemorySize64 : 47992832

PagedSystemMemorySize : 754224

PagedSystemMemorySize64 : 754224

PeakPagedMemorySize : 48001024

PeakPagedMemorySize64 : 48001024

PeakWorkingSet : 73150464

PeakWorkingSet64 : 73150464

PeakVirtualMemorySize : 464146432

PeakVirtualMemorySize64 : 464146432

PriorityBoostEnabled : True

PrivateMemorySize64 : 47992832

PrivilegedProcessorTime : 00:00:36.2343750

ProcessName : WINWORD

ProcessorAffinity : 15

Responding : True

SessionId : 1

 Fine-Tuning System Performance CHAPTER 14 415

StartInfo : System.Diagnostics.ProcessStartInfo

StartTime : 2/28/2009 10:22:34 AM

Threads : {5204, 5244, 5300, 5540...}

UserProcessorTime : 00:01:24.8125000

VirtualMemorySize64 : 463138816

EnableRaisingEvents : False

WorkingSet64 : 73142272

 The output shows the exact confi guration of the process. The properties you will
work with the most are summarized in Table 14-1.

 NOTE By default, many properties that measure memory usage are defi ned as 32-bit

values. When working with Get-Process on 64-bit systems, you’ll fi nd that these proper-

ties have both a 32-bit and a 64-bit version. On 64-bit systems with more than 4 GB of

RAM, you’ll need to use the 64-bit versions to ensure you get accurate values.

 TABLE 14-1 Properties of Get-Process and How They Are Used

 PROPERTY NAME PROPERTY DESCRIPTION

 BasePriority Shows the priority of the process. Priority deter-
mines how much of the system resources are allo-
cated to a process. The standard priorities are Low
(4), Below Normal (6), Normal (8), Above Normal
(10), High (13), and Real-Time (24). Most processes
have a Normal priority by default, and the highest
priority is given to real-time processes.

 CPU Shows TotalProcessorTime in seconds.

 Description Shows a description of the process.

 FileVersion Shows the fi le version of the process’s executable.

 HandleCount Shows the number of fi le handles maintained by
the process. The number of handles used is an
indicator of how dependent the process is on the
fi le system. Some processes have thousands of
open fi le handles. Each fi le handle requires system
memory to maintain.

 Id Shows the run-time identifi cation number of the
process.

 MinWorkingSet Shows the minimum amount of working set
memory used by the process.

StartInfo : System.Diagnostics.ProcessStartInfo

StartTime : 2/28/2009 10:22:34 AM

Threads : {5204, 5244, 5300, 5540...}

UserProcessorTime : 00:01:24.8125000

VirtualMemorySize64 : 463138816

EnableRaisingEvents : False

WorkingSet64 : 73142272

 CHAPTER 14 Fine-Tuning System Performance416

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME PROPERTY DESCRIPTION

Modules Shows the executables and dynamically linked
libraries used by the process.

NonpagedSystemMemory-
Size/NonpagedSystem-
MemorySize64

Shows the amount of virtual memory for a pro-
cess that cannot be written to disk. The nonpaged
pool is an area of RAM for objects that can’t
be written to disk. You should note processes
that require a high amount of nonpaged pool
memory. If the server doesn’t have enough free
memory, these processes might be the reason for
a high level of page faults.

PagedSystemMemorySize/
PagedSystemMemorySize64

Shows the amount of committed virtual memory
for a process that can be written to disk. The
paged pool is an area of RAM for objects that
can be written to disk when they aren’t used. As
process activity increases, so does the amount of
pool memory the process uses. Most processes
have more paged pool than nonpaged pool
requirements.

Path Shows the full path to the executable for the
process.

PeakPagedMemorySize/
PeakPagedMemorySize64

Shows the peak amount of paged memory used
by the process.

PeakVirtualMemorySize/
PeakVirtualMemorySize64

Shows the peak amount of virtual memory used
by the process.

PeakWorkingSet/
PeakWorkingSet64

Shows the maximum amount of memory the
 process used, including both the private work-
ing set and the nonprivate working set. If peak
memory is exceptionally large, this can be an
indicator of a memory leak.

PriorityBoostEnabled Shows a Boolean value that indicates whether the
process has the PriorityBoost feature enabled.

PriorityClass Shows the priority class of the process.

PrivilegedProcessorTime Shows the amount of kernel-mode usage time for
the process.

ProcessName Shows the name of the process.

 Fine-Tuning System Performance CHAPTER 14 417

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME PROPERTY DESCRIPTION

ProcessorAffinity Shows the processor affinity setting for the
 process.

Responding Shows a Boolean value that indicates whether the
process responded when tested.

SessionId Shows the identification number user (session)
within which the process is running. This corre-
sponds to the ID value listed on the Users tab in
Task Manager.

StartTime Shows the date and time the process was started.

Threads Shows the number of threads that the process is
using. Most server applications are multithreaded,
which allows concurrent execution of process
requests. Some applications can dynamically
control the number of concurrently executing
threads to improve application performance.
Too many threads, however, can actually reduce
performance, because the operating system has
to switch thread contexts too frequently.

TotalProcessorTime Shows the total amount of CPU time used by the
process since it was started. If a process is using
a lot of CPU time, the related application might
have a configuration problem. This can also indi-
cate a runaway or nonresponsive process that is
unnecessarily tying up the CPU.

UserProcessorTime Shows the amount of user-mode usage time for
the process.

VirtualMemorySize/
VirtualMemorySize64

Shows the amount of virtual memory allocated
to and reserved for a process. Virtual memory
is memory on disk and is slower to access than
pooled memory. By configuring an application
to use more physical RAM, you might be able to
increase performance. To do this, however, the
system must have available RAM. If it doesn’t,
other processes running on the system might
slow down.

 CHAPTER 14 Fine-Tuning System Performance418

TABLE 14-1 Properties of Get-Process and How They Are Used

PROPERTY NAME PROPERTY DESCRIPTION

WorkingSet/WorkingSet64 Shows the amount of memory the process is cur-
rently using, including both the private working
set and the nonprivate working set. The private
working set is memory the process is using that
cannot be shared with other processes. The
nonprivate working set is memory the process is
using that can be shared with other processes. If
memory usage for a process slowly grows over
time and doesn’t go back to the baseline value,
this can be an indicator of a memory leak.

Filtering Process Output

By redirecting the output to Where-Object, you can filter Get-Process using any of the
properties available. This means you can specify that you want to see only processes
that aren’t responding or only processes that use a large amount of CPU time.

You designate how a filter should be applied using filter operators. The available
filter operators include:

 –Eq Equals. If the property contains the specified value, the process is
included in the output.

 –Ne Not equals. If the property contains the specified value, the process is
excluded from the output.

 –Gt Greater than. If the property contains a numeric value and that value is
greater than the value specified, the process is included in the output.

 –Lt Less than. If the property contains a numeric value and that value is less
than the value specified, the process is included in the output.

 –Ge Greater than or equal to. If the property contains a numeric value
and that value is greater than or equal to the value specified, the process is
included in the output.

 –Le Less than or equal to. If the property contains a numeric value and that
value is less than or equal to the value specified, the process is included in
the output.

 –Match Pattern match. If the property contains a match for this string, the
process is included in the output.

As Table 14-2 shows, the values that you can use with filter operators depend on
the Get-Process property you use. Remember that all properties are available even if
they aren’t normally displayed with the parameters you’ve specified.

 Fine-Tuning System Performance CHAPTER 14 419

 TABLE 14-2 Filter Operators and Valid Values for Get-Process

 PROPERTY NAME OPERATORS TO USE VALID VALUES

 BasePriority –eq, –ne, –gt, –lt,
–ge, –le

Any value from 0 to 24

 HandleCount –eq, –ne, –gt, –lt,
–ge, –le

Any valid positive integer

 MachineName –eq, –ne Any valid string of characters

 Modules –eq, –ne, –match Dynamic-link library (DLL) name

 PrivilegedProcessor-
Time

–eq, –ne, –gt, –lt,
–ge, –le

Any valid time in the format
hh:mm:ss

 ProcessID –eq, –ne, –gt, –lt,
–ge, –le

Any valid positive integer

 ProcessName –eq, –ne Any valid string of characters

 Responding –eq, –ne $True, $False

 SessionID –eq, –ne, –gt, –lt,
–ge, –le

Any valid session number

 Username –eq, –ne Any valid user name, with user
name only or in domain\user
format

 UserProcessorTime –eq, –ne, –gt, –lt,
–ge, –le

Any valid time in the format
hh:mm:ss

 WorkingSet –eq, –ne, –gt, –lt,
–ge, –le

Any valid integer, expressed in
kilobytes (KB)

 By default, Get-Process looks at all processes regardless of their status. With the
Responding property, you can fi nd processes that either are or aren’t responding. This
property is set to a Boolean value. Consider the following examples:

get-process | where-object {$_.responding -eq $False}
get-process | where-object {$_.responding -eq $True}

 In the fi rst example, you list all processes that aren’t responding. In the second
example, you list all processes that are responding.

 Because high-priority processes use more processor time than other processes,
you might want to review the high-priority processes running on a computer when
you are evaluating performance. Most processes have a normal priority and a priority

get-process | where-object {$_.responding -eq $False}
get-process | where-object {$_.responding -eq $True}

CHAPTER 14 Fine-Tuning System Performance420

value of 8. You can fi nd processes with a priority higher than 8 as shown in the follow-
ing example and sample output:

get-process | where-object {$_.basepriority -gt 8}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 655 5 1872 5232 94 588 csrss

 493 7 22108 19876 155 644 csrss

 791 12 4820 2420 69 692 lsass

 280 8 3216 7732 51 680 services

 28 1 364 812 4 516 smss

 106 4 1560 4192 46 636 wininit

 143 4 2528 6700 56 804 winlogon

You also might want to fi nd processes that are using a lot of CPU time. In the fol-
lowing example and sample output, you check for processes that are using more than
30 minutes of privileged processor time:

get-process | where-object {$_.privilegedprocessortime -gt "00:30:00"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 553 32 52924 80096 487 3026.42 5200 W3SVC

Viewing the Relationship Between Running Processes

and Services

When you use Win32_Service with Get-Process, you can examine the relationship
between services confi gured on a computer and running processes. The ID of the
process under which a service is running is shown as part of the standard output
when you work with Win32_Service. Here is an example and sample output for the
Windows Search service:

get-wmiobject -class win32_service -filter "name='wsearch'"

ExitCode : 0

Name : WSearch

ProcessId : 2532

StartMode : Auto

State : Running

Status : OK

get-process | where-object {$_.basepriority -gt 8}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 655 5 1872 5232 94 588 csrss

 493 7 22108 19876 155 644 csrss

 791 12 4820 2420 69 692 lsass

 280 8 3216 7732 51 680 services

 28 1 364 812 4 516 smss

 106 4 1560 4192 46 636 wininit

 143 4 2528 6700 56 804 winlogon

get-process | where-object {$_.privilegedprocessortime -gt "00:30:00"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 553 32 52924 80096 487 3026.42 5200 W3SVC

get-wmiobject -class win32_service -filter "name='wsearch'"

ExitCode : 0

Name : WSearch

ProcessId : 2532

StartMode : Auto

State : Running

Status : OK

 Fine-Tuning System Performance CHAPTER 14 421

 Using the ProcessId property of the Win32_Service object, you can view detailed
information about the process under which a service is running, as shown in the fol-
lowing example:

$s = get-wmiobject -class win32_service -filter "name='wsearch'"
get-process -id $s.processid

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 1294 15 43768 40164 162 2532 SearchIndexer

 Alternatively, you can get the same result using the following code:

get-wmiobject -class win32_service -filter "name='wsearch'" |
foreach ($a) {get-process -id $_.processid}

 By default, the output of Get-Process is formatted as a table, but you can also for-
mat the output as a list. Beyond formatting, the important thing to note here is that
Get-Process lists services by the base name of the executable that starts the service.
Here, SearchIndexer.exe is the name of the executable that starts the Windows Search
service.

 You can use the correlation between processes and services to help you manage
systems. For example, if you think you are having problems with the World Wide
Web Publishing Service (W3svc), one step in your troubleshooting process is to begin
monitoring the service’s related process or processes. You would want to track the
following:

 Process status, such as whether the process is responding or not responding

 Memory usage, including the working set, paged system memory, and vir-
tual memory

 CPU time, including privileged processor time and user processor time

 By tracking these statistics over time, you can watch for changes that can indicate
the process has stopped responding, the process is a runaway process hogging CPU
time, or there is a memory leak.

 Viewing Lists of DLLs Being Used by Processes

 When you use Get-Process, you can examine the relationship between running
processes and DLLs confi gured on the system. In the output, the names of DLLs that
the process uses are stored in the Modules property. However, the standard output
might not show you the complete list. Consider the following example and sample
output:

get-process dwm | format-list modules

$s = get-wmiobject -class win32_service -filter "name='wsearch'"
get-process -id $s.processid

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 1294 15 43768 40164 162 2532 SearchIndexer

get-wmiobject -class win32_service -filter "name='wsearch'" |
foreach ($a) {get-process -id $_.processid}

get-process dwm | format-list modules

CHAPTER 14 Fine-Tuning System Performance422

Modules : {System.Diagnostics.ProcessModule (Dwm.exe),

System.Diagnostics.ProcessModule (ntdll.dll),

System.Diagnostics.ProcessModule (kernel32.dll),

System.Diagnostics.ProcessModule (ADVAPI32.dll)...}

TIP The preference variable $FormatEnumerationLimit controls how many enumer-

ated items are included in a grouped display. The default value is 4, and this is why only

four DLLs are shown here. If you increment this variable, you’ll be able to see more

values by default. In this example, you would have needed to set this variable to 30 or

more to see all the DLLs.

Here, per the default confi guration of Windows PowerShell, you see only four
values for the Modules property, and the rest of the values are truncated. To see all
the DLLs, store the Process object in a variable and then list the value of the Modules
property as shown in the following example and sample output:

$p = get-process dwm
$p.modules

 Size(K) ModuleName FileName

 ------- ---------- --------

 96 Dwm.exe C:\Windows\system32\Dwm.exe

 1180 ntdll.dll C:\Windows\system32\ntdll.dll

 876 kernel32.dll C:\Windows\system32\kernel32.dll

 792 ADVAPI32.dll C:\Windows\system32\ADVAPI32.dll

 776 RPCRT4.dll C:\Windows\system32\RPCRT4.dll

 300 GDI32.dll C:\Windows\system32\GDI32.dll

 628 USER32.dll C:\Windows\system32\USER32.dll

 680 msvcrt.dll C:\Windows\system32\msvcrt.dll

 1296 ole32.dll C:\Windows\system32\ole32.dll

 564 OLEAUT32.dll C:\Windows\system32\OLEAUT32.dll

 252 UxTheme.dll C:\Windows\system32\UxTheme.dll

 120 IMM32.dll C:\Windows\system32\IMM32.dll

 800 MSCTF.dll C:\Windows\system32\MSCTF.dll

 96 dwmredir.dll C:\Windows\system32\dwmredir.dll

 28 SLWGA.dll C:\Windows\system32\SLWGA.dll

 1188 urlmon.dll C:\Windows\system32\urlmon.dll

 352 SHLWAPI.dll C:\Windows\system32\SHLWAPI.dll

 276 iertutil.dll C:\Windows\system32\iertutil.dll

 40 WTSAPI32.dll C:\Windows\system32\WTSAPI32.dll

 232 slc.dll C:\Windows\system32\slc.dll

 36 LPK.DLL C:\Windows\system32\LPK.DLL

 500 USP10.dll C:\Windows\system32\USP10.dll

 1656 comctl32.dll C:\Windows\WinSxS\x86_microsoft....

 1984 milcore.dll C:\Windows\system32\milcore.dll

 28 PSAPI.DLL C:\Windows\system32\PSAPI.DLL

Modules : {System.Diagnostics.ProcessModule (Dwm.exe),

System.Diagnostics.ProcessModule (ntdll.dll),

System.Diagnostics.ProcessModule (kernel32.dll),

System.Diagnostics.ProcessModule (ADVAPI32.dll)...}

$p = get-process dwm
$p.modules

 Size(K) ModuleName FileName

------- ---------- --------

 96 Dwm.exe C:\Windows\system32\Dwm.exe

 1180 ntdll.dll C:\Windows\system32\ntdll.dll

 876 kernel32.dll C:\Windows\system32\kernel32.dll

 792 ADVAPI32.dll C:\Windows\system32\ADVAPI32.dll

 776 RPCRT4.dll C:\Windows\system32\RPCRT4.dll

 300 GDI32.dll C:\Windows\system32\GDI32.dll

 628 USER32.dll C:\Windows\system32\USER32.dll

 680 msvcrt.dll C:\Windows\system32\msvcrt.dll

 1296 ole32.dll C:\Windows\system32\ole32.dll

 564 OLEAUT32.dll C:\Windows\system32\OLEAUT32.dll

 252 UxTheme.dll C:\Windows\system32\UxTheme.dll

 120 IMM32.dll C:\Windows\system32\IMM32.dll

 800 MSCTF.dll C:\Windows\system32\MSCTF.dll

 96 dwmredir.dll C:\Windows\system32\dwmredir.dll

 28 SLWGA.dll C:\Windows\system32\SLWGA.dll

 1188 urlmon.dll C:\Windows\system32\urlmon.dll

 352 SHLWAPI.dll C:\Windows\system32\SHLWAPI.dll

 276 iertutil.dll C:\Windows\system32\iertutil.dll

 40 WTSAPI32.dll C:\Windows\system32\WTSAPI32.dll

 232 slc.dll C:\Windows\system32\slc.dll

 36 LPK.DLL C:\Windows\system32\LPK.DLL

 500 USP10.dll C:\Windows\system32\USP10.dll

 1656 comctl32.dll C:\Windows\WinSxS\x86_microsoft....

 1984 milcore.dll C:\Windows\system32\milcore.dll

 28 PSAPI.DLL C:\Windows\system32\PSAPI.DLL

 Fine-Tuning System Performance CHAPTER 14 423

 132 NTMARTA.DLL C:\Windows\system32\NTMARTA.DLL

 296 WLDAP32.dll C:\Windows\system32\WLDAP32.dll

 180 WS2_32.dll C:\Windows\system32\WS2_32.dll

 24 NSI.dll C:\Windows\system32\NSI.dll

 68 SAMLIB.dll C:\Windows\system32\SAMLIB.dll

 Alternatively, you can get the same result using the following code:

get-process dwm | foreach ($a) {$_.modules}

 Knowing which DLL modules a process has loaded can further help you pinpoint
what might be causing a process to become nonresponsive, to fail to release the CPU,
or to use more memory than it should. In some cases, you might want to check DLL
versions to ensure that they are the correct DLLs that the system should be running.
To do this, you need to consult the Microsoft Knowledge Base or manufacturer docu-
mentation to verify DLL versions and other information.

 If you are looking for processes using a specifi ed DLL, you can also specify the
name of the DLL you are looking for. For example, if you suspect that the printer
spooler driver Winspool.drv is causing processes to hang up, you can search for
processes that use Winspool.drv instead of Winspool32.drv and check their status and
resource usage.

 The syntax that you use to specify the DLL to fi nd is

get-process | where-object {$_.modules -match "DLLName"}

 where DLLName is the name of the DLL to search for. Get-Process matches the DLL
name without regard to the letter case, and you can enter the DLL name in any letter
case. In the following example, you are looking for processes using Winspool.drv,
and the output shows the processes using the DLL, along with their basic process
information:

get-process | where-object {$_.modules -match "winspool.drv"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 147 5 2696 8108 77 0.11 2956 DrgToDsc

 787 23 38444 49148 218 11.97 2132 explorer

 114 5 4708 7164 69 0.17 580 IAAnotif

 288 10 11516 18312 118 1.39 672 IntelHCTAgent

 71 4 2316 7068 69 2.13 5448 notepad

 68 3 2844 4544 57 0.03 2804 rundll32

 543 32 52304 79096 480 283.83 5200 WINWORD

 132 NTMARTA.DLL C:\Windows\system32\NTMARTA.DLL

 296 WLDAP32.dll C:\Windows\system32\WLDAP32.dll

 180 WS2_32.dll C:\Windows\system32\WS2_32.dll

 24 NSI.dll C:\Windows\system32\NSI.dll

 68 SAMLIB.dll C:\Windows\system32\SAMLIB.dll

get-process dwm | foreach ($a) {$_.modules}

get-process | where-object {$_.modules -match "DLLName"}

get-process | where-object {$_.modules -match "winspool.drv"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 147 5 2696 8108 77 0.11 2956 DrgToDsc

 787 23 38444 49148 218 11.97 2132 explorer

 114 5 4708 7164 69 0.17 580 IAAnotif

 288 10 11516 18312 118 1.39 672 IntelHCTAgent

 71 4 2316 7068 69 2.13 5448 notepad

 68 3 2844 4544 57 0.03 2804 rundll32

 543 32 52304 79096 480 283.83 5200 WINWORD

CHAPTER 14 Fine-Tuning System Performance424

Stopping Processes

When you want to stop processes that are running on a local or remote system, you
can use Stop-Process. With Stop-Process, you can stop processes by process ID using
the –Id parameter or by name using the –Name parameter. Although you cannot use
wildcards with the –Id parameter, you can use wildcards with the –Name parameter.

By default, Stop-Process prompts for confi rmation before stopping any process
that is not owned by the current user. If you have appropriate permissions to stop
a process and don’t want to be prompted, use the –Force parameter to disable
 prompting.

If you want to stop multiple processes by process ID or name, you can enter
 multiple IDs or names as well. With process names, however, watch out, because Stop-
Process stops all processes that have that process name. Thus, if three instances of
Svchost are running, all three processes are stopped if you use Stop-Process with that
image name.

REAL WORLD As you examine processes, keep in mind that a single application might

start multiple processes. Generally, you will want to stop the parent process, which

should stop the entire process tree, starting with the parent application process and

including any dependent processes.

Consider the following examples to see how you can use Stop-Process:

STOP PROCESS ID 1106:

stop-process 1106

STOP ALL PROCESSES WITH THE NAME W3SVC:

stop-process –name w3svc

STOP PROCESSES 1106, 1241, AND 1546:

stop-process 1106, 1241, 1546

FORCE PROCESS 891 TO STOP:

stop-process -force –id 891

To ensure that only processes matching specifi c criteria are stopped, you can use
Get-Process and Stop-Process together. For example, you might want to use Get-
 Process to get only instances of Winword that are not responding and should be
stopped, rather than all instances of Winword (which is the default when you use the
–Name parameter). Or you might want to get and stop all processes using a specifi c DLL.

stop-process 1106

stop-process –name w3svc

stop-process 1106, 1241, 1546

stop-process -force –id 891

 Fine-Tuning System Performance CHAPTER 14 425

 When you are stopping processes, you want to be careful not to accidentally stop
critical system processes, such as Lsass, Wininit, or Winlogon. Typically, system pro-
cesses have a process ID with a value less than 1000. One safeguard you can use when
stopping processes is to ensure the process ID is greater than 999.

 Consider the following examples to see how you can use Get-Process with
 Stop-Process:

STOP INSTANCES OF WINWORD THAT ARE NOT RESPONDING:

get-process –name winword | where-object {$_.responding -eq $False}
| stop-process

STOP ALL PROCESSES WITH A PROCESS ID GREATER THAN 999 IF THEY AREN’T

RESPONDING:

get-process | where-object {$_.id -gt 999} | where-object
{$_.responding -eq $False} | stop-process

STOP ALL PROCESSES USING THE WINSPOOL.DRV DLL:

get-process | where-object {$_.modules -match "winspool.drv"} |
stop-process

 Although Stop-Process doesn’t support the –ComputerName parameter, you can
use the following technique to manage the processes on remote computers:

get-process w3svc -computername engpc18 | stop-process

invoke-command -computername engpc18 -scriptblock { get-process w3svc |
stop-process }

 Here, you use Get-Process to get a Process object on a remote computer, and then
you stop the process by using Stop-Process. Note that this command reports only
failure. It won’t confi rm that a process was stopped, but it will tell you that the process
was not found or could not be stopped.

 Digging Deeper into Processes

 In addition to using Get-Process to get information about running processes, you can
use Get-WmiObject and the Win32_Process class. If you type get-wmiobject -class

win32_process, you’ll see detailed information on every process running on the
computer. To examine a specifi c process, you can fi lter by image name. As shown in the
following example and sample output, the image name is the name of the executable
for the process:

get-wmiobject -class win32_process -filter "name='searchindexer.exe'"

get-process –name winword | where-object {$_.responding -eq $False}
| stop-process

get-process | where-object {$_.id -gt 999} | where-object
{$_.responding -eq $False} | stop-process

get-process | where-object {$_.modules -match "winspool.drv"} |
stop-process

get-process w3svc -computername engpc18 | stop-process

invoke-command -computername engpc18 -scriptblock { get-process w3svc |
stop-process }

get-wmiobject -class win32_process -filter "name='searchindexer.exe'"

CHAPTER 14 Fine-Tuning System Performance426

Caption : SearchIndexer.exe

CommandLine :

CreationClassName : Win32_Process

CreationDate : 20090228102000.542640-480

CSCreationClassName : Win32_ComputerSystem

CSName : TECHPC22

Description : SearchIndexer.exe

ExecutablePath :

ExecutionState :

Handle : 2532

HandleCount : 1323

InstallDate :

KernelModeTime : 15156250

MaximumWorkingSetSize :

MinimumWorkingSetSize :

Name : SearchIndexer.exe

OSCreationClassName : Win32_OperatingSystem

OtherOperationCount : 34235

OtherTransferCount : 2763510

PageFaults : 34156

PageFileUsage : 43696

ParentProcessId : 680

PeakPageFileUsage : 44760

PeakVirtualSize : 174481408

PeakWorkingSetSize : 41128

Priority : 8

PrivatePageCount : 44744704

ProcessId : 2532

QuotaNonPagedPoolUsage : 16

QuotaPagedPoolUsage : 177

QuotaPeakNonPagedPoolUsage : 29

QuotaPeakPagedPoolUsage : 183

ReadOperationCount : 9223

ReadTransferCount : 45734098

SessionId : 0

Status :

ThreadCount : 16

UserModeTime : 55156250

VirtualSize : 169123840

WindowsVersion : 6.0.6001

WorkingSetSize : 41414656

WriteOperationCount : 3845

WriteTransferCount : 27617602

ProcessName : SearchIndexer.exe

Win32_Process objects provide some information that Process objects don’t,
including details on read and write operations. The rest of the information is the same
as that provided by Get-Process, albeit in some cases the information is presented in a
different way.

Caption : SearchIndexer.exe

CommandLine :

CreationClassName : Win32_Process

CreationDate : 20090228102000.542640-480

CSCreationClassName : Win32_ComputerSystem

CSName : TECHPC22

Description : SearchIndexer.exe

ExecutablePath :

ExecutionState :

Handle : 2532

HandleCount : 1323

InstallDate :

KernelModeTime : 15156250

MaximumWorkingSetSize :

MinimumWorkingSetSize :

Name : SearchIndexer.exe

OSCreationClassName : Win32_OperatingSystem

OtherOperationCount : 34235

OtherTransferCount : 2763510

PageFaults : 34156

PageFileUsage : 43696

ParentProcessId : 680

PeakPageFileUsage : 44760

PeakVirtualSize : 174481408

PeakWorkingSetSize : 41128

Priority : 8

PrivatePageCount : 44744704

ProcessId : 2532

QuotaNonPagedPoolUsage : 16

QuotaPagedPoolUsage : 177

QuotaPeakNonPagedPoolUsage : 29

QuotaPeakPagedPoolUsage : 183

ReadOperationCount : 9223

ReadTransferCount : 45734098

SessionId : 0

Status :

ThreadCount : 16

UserModeTime : 55156250

VirtualSize : 169123840

WindowsVersion : 6.0.6001

WorkingSetSize : 41414656

WriteOperationCount : 3845

WriteTransferCount : 27617602

ProcessName : SearchIndexer.exe

 Fine-Tuning System Performance CHAPTER 14 427

 Process objects have a StartTime property, and Win32_Process objects have a
 CreationDate property. Whereas the StartTime property is presented in datetime
format, the CreationDate property is presented as a datetime string. Using the
 StartTime property, you can search for all processes that have been running for
 longer than a specifi ed period of time. In the following example, you look for
 processes that have been running longer than one day:

$yesterday = (get-date).adddays(-1)
get-process | where-object {$_.starttime -gt $yesterday}

 Alternatively, you can get the same result using the following code:

get-process | where-object {$_.starttime -gt (get-date).adddays(-1)}

 With the CreationDate property, you can perform the same search. Here is an
example:

$yesterday = (get-date).adddays(-1)

get-wmiobject -class win32_process | where-object {$_.creationdate –gt
$yesterday}

 Win32_Process objects have a property called threadcount, which is a count of
threads associated with a process. You can list the thread count as shown in the fol-
lowing example:

get-wmiobject -class win32_process -filter "name='searchindexer.exe'" |
format-list name, threadcount

name : SearchIndexer.exe

threadcount : 17

 Process objects have a Threads property that contains all the threads associated
with a process. You can count the threads as shown in the following example:

$p = get-process –name searchindexer
write-host "Number of threads: " ($p.threads).count

Number of threads: 17

 You can view and work with each individual Thread object as well. As shown in the
following example and sample output, you can list the information associated with
each Thread object:

$p = get-process –name searchindexer
$p.threads

$yesterday = (get-date).adddays(-1)
get-process | where-object {$_.starttime -gt $yesterday}

get-process | where-object {$_.starttime -gt (get-date).adddays(-1)}

$yesterday = (get-date).adddays(-1)

get-wmiobject -class win32_process | where-object {$_.creationdate –gt
$yesterday}

get-wmiobject -class win32_process -filter "name='searchindexer.exe'" |
format-list name, threadcount

name : SearchIndexer.exe

threadcount : 17

$p = get-process –name searchindexer
write-host "Number of threads: " ($p.threads).count

Number of threads: 17

$p = get-process –name searchindexer
$p.threads

CHAPTER 14 Fine-Tuning System Performance428

BasePriority : 8

CurrentPriority : 10

Id : 2536

IdealProcessor :

PriorityBoostEnabled :

PriorityLevel :

PrivilegedProcessorTime :

StartAddress : 0

StartTime :

ThreadState : Wait

TotalProcessorTime :

UserProcessorTime :

WaitReason : Executive

ProcessorAffinity :

BasePriority : 8

CurrentPriority : 9

. . .

Or you can view details for a specifi c thread by referencing its index position in the
Threads object array. For example, if you want to view the fi rst Thread object, you can
reference $p.threads[0].

 Each thread has a base priority, a current priority, an ID, a start address, and a
thread state. If the thread is waiting for another process or thread, the wait reason is
also listed. Wait reasons include Executive (when the thread is waiting on the oper-
ating system kernel components) and UserRequest (when the thread is waiting on
user-mode components).

 When you are working with Win32_Process objects, you can use several methods
to work with processes. These methods include the following:

 GetOwner() Gets the user account under which the process is running

 GetOwnerSid() Gets the security identifi er of the user account under
which the process is running

 Terminate() Stops a process that is running on a local or remote system

 The basic syntaxes for getting the process owner and the owner’s security identi-
fi er are

$processObject.GetOwner()

 and

$processObject.GetOwnerSid()

 where $processObject is a reference to a Win32_Process object. Here is an example
and partial output:

$p = get-wmiobject -class win32_process -filter "name='notepad.exe'"
$p.getowner()

BasePriority : 8

CurrentPriority : 10

Id : 2536

IdealProcessor :

PriorityBoostEnabled :

PriorityLevel :

PrivilegedProcessorTime :

StartAddress : 0

StartTime :

ThreadState : Wait

TotalProcessorTime :

UserProcessorTime :

WaitReason : Executive

ProcessorAffinity :

BasePriority : 8

CurrentPriority : 9

. . .

$p = get-wmiobject -class win32_process -filter "name='notepad.exe'"
$p.getowner()

 Fine-Tuning System Performance CHAPTER 14 429

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

 Here, you examine a running instance of Notepad and get the owner of the
Notepad process. In the return value, note the Domain and User properties, which
show the domain and user account of the process owner, respectively. As shown in
the following example and partial output, you can display the security identifi er of the
process owner by typing

$p.getownersid()

Sid : S-1-5-21-4857584848-3848484848-8484884848-1111

 In the return value, the Sid property contains the owner’s security identifi er.

 As shown in the following example and partial output, you can stop the process by
typing the following:

$p.terminate()

ReturnValue : 0

 The return value in the output is what you want to focus on. A return value of 0
indicates success. Any other return value indicates an error. Typically, errors occur
because you aren’t the process owner and don’t have appropriate permissions to ter-
minate the process. You can resolve this problem by providing credentials or by using
an elevated administrator PowerShell prompt.

 You can use the techniques discussed previously to work with processes when
Get-WmiObject returns a single matching Win32_Process object. However, these
techniques won’t work as expected when Get-WmiObject returns multiple Win32_
Process objects. The reason for this is that the objects are stored in an array and you
must specify the instance within the array to work with. One technique for doing so is
shown in the following example and partial output:

$procs = get-wmiobject -class win32_process -filter "name='notepad.exe'"
foreach ($p in $procs) { $p.getowner() }

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

$p.getownersid()

Sid : S-1-5-21-4857584848-3848484848-8484884848-1111

$p.terminate()

ReturnValue : 0

$procs = get-wmiobject -class win32_process -filter "name='notepad.exe'"
foreach ($p in $procs) { $p.getowner() }

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

Domain : CPANDL

ReturnValue : 0

User : WILLIAMS

CHAPTER 14 Fine-Tuning System Performance430

Here, two instances of Notepad are running, and you list the owner of each
 process. This technique works when there is only one instance of Notepad running
as well.

Performance Monitoring

Performance monitoring helps you watch for adverse conditions and take appropriate
action to resolve them. Windows PowerShell has several commands for this purpose,
and in this section, we’ll look at the ones you’ll use the most.

 Understanding Performance Monitoring Commands

 Commands you can use to monitor performance include:

 Get-Counter Gets objects representing real-time performance counter
data directly from the performance monitoring instrumentation in Windows.
You can list the performance counter sets and the counters that they contain,
set the sample size and interval, and specify the credentials of users with
permission to collect performance data.

Get-Counter [-MaxSamples NumSamples] [-Counter] CounterPaths
[-SampleInterval Interval] {AddtlParams}

Get-Counter -ListSet SetNames {AddtlParams}

{AddtlParams}
[-Credential CredentialObject] [-ComputerName ComputerNames]

 Export-Counter Exports performance counter data to log fi les in BLG
(binary performance log, the default), CSV (comma-separated), or TSV (tab-
separated) format. This cmdlet is designed to export data that is returned
by the Get-Counter and Import-Counter cmdlets. Only Windows 7, Windows
Server 2008 R2, and later versions of Windows support this command.

Export-Counter [-FileFormat Format] [-Path] SavePath
-InputObject PerformanceCounterSampleSets {AddtlParams}

{AddtlParams}
[-Force {$True | $False}] [-Circular {$True | $False}]
[-MaxSize MaxSizeInBytes]

 Import-Counter Imports performance counter data from performance
counter log fi les and creates objects for each counter sample in the fi le. The
objects created are identical to those that Get-Counter returns when it col-
lects performance counter data. You can import data from BLG, CSV, and TSV
formatted log fi les. When you are using BLG, you can import up to 32 fi les

Get-Counter [-MaxSamples NumSamples] [-Counter] CounterPaths
[-SampleInterval Interval] {AddtlParams}

Get-Counter -ListSet SetNames {AddtlParams}

{AddtlParams}
[-Credential CredentialObject] [-ComputerName ComputerNames]

Export-Counter [-FileFormat Format] [-Path] SavePath
-InputObject PerformanceCounterSampleSets {AddtlParams}

{AddtlParams}
[-Force {$True | $False}] [-Circular {$True | $False}]
[-MaxSize MaxSizeInBytes]

 Fine-Tuning System Performance CHAPTER 14 431

in each command. To get a subset of data from a fi le, use the parameters of
Import-Counter to fi lter the data that you import.

Import-Counter [-Path] FilePaths {AddlParams}
Import-Counter -ListSet SetNames [-Path] FilePaths
Import-Counter [-Summary {$True | $False}]

{AddtlParams}
[-Counter CountersToInclude] [-MaxSamples NumSamples]
[-StartTime DateTime] [-EndTime DateTime]

 Get-Counter is designed to track and display performance information in real
time. It gathers information on any performance parameters you’ve confi gured for
monitoring and presents it as output. Each performance item you want to monitor is
defi ned by the following three components:

 Performance object Represents any system component that has a set of
measurable properties. A performance object can be a physical part of the
operating system, such as the memory, the processor, or the paging fi le; a
logical component, such as a logical disk or print queue; or a software ele-
ment, such as a process or a thread.

 Performance object instance Represents single occurrences of perfor-
mance objects. If a particular object has multiple instances, such as when
a computer has multiple processors or multiple disk drives, you can use an
object instance to track a specifi c occurrence of that object. You can also
elect to track all instances of an object, such as whether you want to monitor
all processors on a system.

 Performance counter Represents measurable properties of performance
objects. For example, with a paging fi le, you can measure the percentage
utilization using the %Usage counter.

 In a standard installation of Windows, many performance objects are available for
monitoring. As you add services, applications, and components, additional perfor-
mance objects can become available. For example, when you install the Domain
Name System (DNS) on a server, the DNS object becomes available for monitoring on
that computer.

 Tracking Performance Data

 Using Get-Counter, you can write performance data to the output or to a log fi le. The
key to using Get-Counter is to identify the path names of the performance counters
you want to track. The performance counter path has the following syntax:

\\ComputerName\ObjectName\ObjectCounter

 where ComputerName is the computer name or IP address of the local or remote
computer you want to work with, ObjectName is the name of a counter object, and
ObjectCounter is the name of the object counter to use. For example, if you want to

Import-Counter [-Path] FilePaths {AddlParams}
Import-Counter -ListSet SetNames [-Path] FilePaths
Import-Counter [-Summary {$True | $False}]

{AddtlParams}
[-Counter CountersToInclude] [-MaxSamples NumSamples]
[-StartTime DateTime] [-EndTime DateTime]

CHAPTER 14 Fine-Tuning System Performance432

track the available memory on Dbserver79, you type the following, and the output
would be similar to that shown:

get-counter "\\dbserver79\memory\available mbytes"

Timestamp CounterSamples

--------- --------------

2/27/2010 4:26:54 PM \\dbserver79\memory\available mbytes : 1675

2/27/2010 4:26:55 PM \\dbserver79\memory\available mbytes : 1672

NOTE Enclosing the counter path in double quotation marks is required in this

example because the counter path includes spaces. Although double quotation marks

aren’t always required, it is good form to always use them.

 Specifying the computer name as part of the counter path is optional. If you
don’t specify the computer name in the counter path, Get-Counter uses the values
you specify in the –ComputerName parameter to set the full path for you. If you don‘t
specify computer names, the local computer name is used. Although this allows you
to easily work with multiple computers, you should familiarize yourself with the full
path format because this is what is recorded in performance traces and performance
logs. Without the computer name in the path, the abbreviated path becomes

\ObjectName\ObjectCounter

 In the following example, you check the available memory on multiple computers
by using the –ComputerName parameter:

get-counter –computername fileserver12, dbserver18, dcserver21
"\memory\available mbytes"

 When you are working with a remote computer, you might need to provide alter-
native credentials. You can do this as shown in the following example:

$cred = get-credential
get-counter –computername fileserver12, dbserver18, dcserver21
"\memory\available mbytes" –credential $cred

 When you use Get-Credential, Windows PowerShell prompts you for a user name
and password and then stores the credentials provided in the $cred variable. These
credentials are then passed to the remote computers for authentication.

 You can easily track all counters for an object by using an asterisk (*) as the counter
name, such as in the following example:

get-counter "\\dbserver79\Memory*"

 Here, you track all counters for the Memory object.

get-counter "\\dbserver79\memory\available mbytes"

Timestamp CounterSamples

--------- --------------

2/27/2010 4:26:54 PM \\dbserver79\memory\available mbytes : 1675

2/27/2010 4:26:55 PM \\dbserver79\memory\available mbytes : 1672

get-counter –computername fileserver12, dbserver18, dcserver21
"\memory\available mbytes"

$cred = get-credential
get-counter –computername fileserver12, dbserver18, dcserver21
"\memory\available mbytes" –credential $cred

get-counter "\\dbserver79\Memory*"

 Fine-Tuning System Performance CHAPTER 14 433

 When objects have multiple instances, such as with the Processor or LogicalDisk
object, you must specify the object instance you want to work with. The full syntax for
this is as follows:

\\ComputerName\ObjectName(ObjectInstance)\ObjectCounter

 Here, you follow the object name with the object instance in parentheses. When
an object has multiple instances, you can work with all instances of that object using
_Total as the instance name. You can work with a specifi c instance of an object by
using its instance identifi er. For example, if you want to examine the Processor\%
 Processor Time counter, you can use this command to work with all processor
instances:

get-counter "\\dbserver79\Processor(_Total)\% Processor Time"

 Or you use this command to work with a specifi c processor instance:

get-counter "\\dbserver79\Processor(0)\% Processor Time"

 Here, Processor(0) identifi es the fi rst processor on the system.

 Get-Counter has several parameters. –MaxSamples sets the number of samples to
collect. –SampleInterval sets the time between samples where the default is 1 second.
–ListSet lists installed counters for the specifi ed objects.

 Get-Counter writes its output to the prompt by default. You can redirect the
output to a performance log by sending the output to Export-Counter. By default,
Export-Counter exports performance counter data to log fi les in binary performance
log format. Using the –FileFormat parameter, you can set the format as CSV for a
comma-delimited text fi le, TSV for a tab-delimited text fi le, or BLG for a binary fi le.
Consider the following example:

get-counter "\\dbserver79\Memory*" | export-counter -fileformat tsv
–path .\dbserver79.txt

 Here, you track all counters for the Memory object and write the output to a
tab-delimited text fi le called Dbserver79.txt in the current working directory. When
you want to work with this data later, you use Import-Counter. Type import-counter

-path followed by the path to the performance log to view the performance data.
Type import-counter -summary -path followed by the path to the performance
log to get a summary view of the data. Type import-counter -listset * -path fol-
lowed by the path to the performance log to see what counters were tracked. Option-
ally, use –StartTime and –EndTime to specify a datetime range to review. Consider the
following example:

$startdate = (get-date).adddays(-1)
$enddate = (get-date)
import-counter –path .\data.txt -starttime $startdate –endtime $enddate

get-counter "\\dbserver79\Processor(_Total)\% Processor Time"

get-counter "\\dbserver79\Processor(0)\% Processor Time"

get-counter "\\dbserver79\Memory*" | export-counter -fileformat tsv
–path .\dbserver79.txt

$startdate = (get-date).adddays(-1)
$enddate = (get-date)
import-counter –path .\data.txt -starttime $startdate –endtime $enddate

CHAPTER 14 Fine-Tuning System Performance434

Here, you examine the performance data in a fi le in the current directory, called
Data.txt. You review the performance details from yesterday at the current time to
today at the current time.

If you need help determining how an object can be used and what its counters are,
type get-counter -listset followed by the object name for which you want to view
counters. The following example and sample output show how this can be used to get
all the Memory-related counters:

get-counter -listset Memory

Counter: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

CounterSetName : Memory

MachineName : EngPC85

CounterSetType : SingleInstance

Description : The Memory performance object consists of counters

that describe the behavior of physical and virtual memory on the

computer. Physical memory is the amount of random access memory on the

computer. Virtual memory consists of the space in physical memory and on

disk. Many of the memory counters monitor paging, which is the movement

of pages of code and data between disk and physical memory. Excessive

paging, a symptom of a memory shortage, can cause delays which interfere

with all system processes.

Paths: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

PathsWithInstances : {}

As with all results returned in PowerShell, the output is returned as an object that
you can manipulate. To get a complete list of counter paths, you can reference the
Paths property as shown in the following example and partial output:

$c = get-counter -listset Memory
$c.paths

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

 Alternatively, you can get the same result using the following code:

get-counter -listset memory | foreach ($a) {$_.paths}

get-counter -listset Memory

Counter: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

CounterSetName : Memory

MachineName : EngPC85

CounterSetType : SingleInstance

Description : The Memory performance object consists of counters

that describe the behavior of physical and virtual memory on the

computer. Physical memory is the amount of random access memory on the

computer. Virtual memory consists of the space in physical memory and on

disk. Many of the memory counters monitor paging, which is the movement

of pages of code and data between disk and physical memory. Excessive

paging, a symptom of a memory shortage, can cause delays which interfere

with all system processes.

Paths: {\Memory\Page Faults/sec, \Memory\Available Bytes,

\Memory\Committed Bytes, \Memory\Commit Limit...}

PathsWithInstances : {}

$c = get-counter -listset Memory
$c.paths

\Memory\Page Faults/sec

\Memory\Available Bytes

\Memory\Committed Bytes

\Memory\Commit Limit

get-counter -listset memory | foreach ($a) {$_.paths}

 Fine-Tuning System Performance CHAPTER 14 435

 If an object has multiple instances, you can list the installed counters with instances
by using the PathsWithInstances property. An example and partial output follow:

$d = get-counter -listset PhysicalDisk
$d.pathswithinstances

\PhysicalDisk(0 E: C:)\Current Disk Queue Length

\PhysicalDisk(1 W:)\Current Disk Queue Length

\PhysicalDisk(2 D:)\Current Disk Queue Length

\PhysicalDisk(3 I:)\Current Disk Queue Length

\PhysicalDisk(4 J:)\Current Disk Queue Length

\PhysicalDisk(5 K:)\Current Disk Queue Length

\PhysicalDisk(6 L:)\Current Disk Queue Length

\PhysicalDisk(7 N:)\Current Disk Queue Length

\PhysicalDisk(8 O:)\Current Disk Queue Length

\PhysicalDisk(9 P:)\Current Disk Queue Length

\PhysicalDisk(10 Q:)\Current Disk Queue Length

\PhysicalDisk(_Total)\Current Disk Queue Length

 Alternatively, you can get the same result using the following code:

get-counter -listset PhysicalDisk | foreach ($a) {$_.pathswithinstances}

 Either way, the output is a long list of available counters arranged according to
their object instances. You can write the output to a text fi le, such as in the following
example:

get-counter -listset PhysicalDisk > disk-counters.txt

 Then edit the text fi le so that only the counters you want to track are included. You
can then use the fi le to determine which performance counters are tracked, as shown
in the following example:

get-counter (get-content .\disk-counters.txt) | export-counter –path
c:\perflogs\disk-check.blg

 Here, Get-Counter reads the list of counters to track from Disk-Counters.txt, and
then it writes the performance data in binary format to the Disk-Check.blg fi le in the
C:\Perfl ogs directory.

 By default, Get-Counter samples data once every second until you tell it to stop
by pressing Ctrl+C. This might be okay when you are working at the PowerShell
prompt and actively monitoring the output. However, it doesn’t work so well when
you have other things to do and can’t actively monitor the output—which is probably
most of the time. Therefore, you’ll usually want to control the sampling interval and
duration.

$d = get-counter -listset PhysicalDisk
$d.pathswithinstances

\PhysicalDisk(0 E: C:)\Current Disk Queue Length

\PhysicalDisk(1 W:)\Current Disk Queue Length

\PhysicalDisk(2 D:)\Current Disk Queue Length

\PhysicalDisk(3 I:)\Current Disk Queue Length

\PhysicalDisk(4 J:)\Current Disk Queue Length

\PhysicalDisk(5 K:)\Current Disk Queue Length

\PhysicalDisk(6 L:)\Current Disk Queue Length

\PhysicalDisk(7 N:)\Current Disk Queue Length

\PhysicalDisk(8 O:)\Current Disk Queue Length

\PhysicalDisk(9 P:)\Current Disk Queue Length

\PhysicalDisk(10 Q:)\Current Disk Queue Length

\PhysicalDisk(_Total)\Current Disk Queue Length

get-counter -listset PhysicalDisk | foreach ($a) {$_.pathswithinstances}

get-counter -listset PhysicalDisk > disk-counters.txt

get-counter (get-content .\disk-counters.txt) | export-counter –path
c:\perflogs\disk-check.blg

CHAPTER 14 Fine-Tuning System Performance436

To control the sampling interval and set how long to sample, you can use the
–SampleInterval and –MaxSamples parameters, respectively. For example, if you want
Get-Counter to sample every 120 seconds and stop logging after 100 samples, you
can enter the following command:

get-counter (get-content .\disk-counters.txt) –sampleinterval 120
–maxsamples 100 | export-counter –path c:\perflogs\disk-check.blg

Detecting and Resolving Performance Issues

Through Monitoring

 Get-Process and Get-Counter provide everything you need for detecting and resolv-
ing most performance issues. However, you’ll often need to dig deep to determine
whether a problem exists and, if so, what is causing the problem.

Monitoring System Resource Usage and Processes

When you are working with processes, you’ll often want to get a snapshot of
system resource usage, which will show you exactly how memory is being used.
One way to get a snapshot is to use the Get-Counter command to display current
values for key counters of the memory object. As discussed previously, the
Memory object is one of many performance objects available, and you can list its
related performance counters by typing the following command at the PowerShell
prompt:

get-counter -listset memory | foreach ($a) {$_.paths}

The Memory object has many counters you can work with. Most counters of the
Memory object display the last observed value or the current percentage value rather
than an average.

Sample 14-1 provides an example of how you can use Get-Counter to get a
snapshot of memory usage. In this example, you use a counter fi le called Perf.txt to
specify the counters you want to track. You collect fi ve samples with an interval of
30 seconds between samples and save the output in a fi le called SaveMemData.txt.
If you import the data into a spreadsheet or convert it to a table in a Word docu-
ment, you can make better sense of the output and gain a better understanding of
how the computer is using the page fi le and paging to disk.

 I chose to track these counters because they give you a good overall snap-
shot of memory usage. If you save the command line as a script, you can run the
script as a scheduled task to get a snapshot of memory usage at various times of
the day.

get-counter (get-content .\disk-counters.txt) –sampleinterval 120
–maxsamples 100 | export-counter –path c:\perflogs\disk-check.blg

get-counter -listset memory | foreach ($a) {$_.paths}

 Fine-Tuning System Performance CHAPTER 14 437

SAMPLE 14-1 Getting a Snapshot of Memory Usage

 Commands

get-counter (get-content .\perf.txt) -maxsamples 5 -sampleinterval 30 >
SaveMemData.txt

 Source for Perf.txt

\memory\% Committed Bytes In Use
\memory\Available MBytes
\memory\Cache Bytes
\memory\Cache Bytes Peak
\memory\Committed Bytes
\memory\Commit Limit
\memory\Page Faults/sec
\memory\Pool Nonpaged Bytes
\memory\Pool Paged Bytes

 Sample output

Timestamp CounterSamples
--------- --------------
2/28/2009 5:04:37 PM \\techpc22\memory\% committed bytes in use :
 22.9519764760423
 \\techpc22\memory\available mbytes :
 1734
 \\techpc22\memory\cache bytes :
 390168576
 \\techpc22\memory\cache bytes peak :
 390688768
 \\techpc22\memory\committed bytes :
 1650675712
 \\techpc22\memory\commit limit :
 7191867392
 \\techpc22\memory\page faults/sec :
 3932.45999649944
 \\techpc22\memory\pool nonpaged bytes :
 70017024
 \\techpc22\memory\pool paged bytes :
 154710016

2/28/2009 5:05:07 PM \\techpc22\memory\% committed bytes in use :
 23.2283134955779
 \\techpc22\memory\available mbytes :
 1714
 \\techpc22\memory\cache bytes :
 389664768
 \\techpc22\memory\cache bytes peak :
 390701056

Commands

get-counter (get-content .\perf.txt) -maxsamples 5 -sampleinterval 30 >
SaveMemData.txt

Source for Perf.txt

\memory\% Committed Bytes In Use
\memory\Available MBytes
\memory\Cache Bytes
\memory\Cache Bytes Peak
\memory\Committed Bytes
\memory\Commit Limit
\memory\Page Faults/sec
\memory\Pool Nonpaged Bytes
\memory\Pool Paged Bytes

Sample output

Timestamp CounterSamples
--------- --------------
2/28/2009 5:04:37 PM \\techpc22\memory\% committed bytes in use :
 22.9519764760423
 \\techpc22\memory\available mbytes :
 1734
 \\techpc22\memory\cache bytes :
 390168576
 \\techpc22\memory\cache bytes peak :
 390688768
 \\techpc22\memory\committed bytes :
 1650675712
 \\techpc22\memory\commit limit :
 7191867392
 \\techpc22\memory\page faults/sec :
 3932.45999649944
 \\techpc22\memory\pool nonpaged bytes :
 70017024
 \\techpc22\memory\pool paged bytes :
 154710016

2/28/2009 5:05:07 PM \\techpc22\memory\% committed bytes in use :
 23.2283134955779
 \\techpc22\memory\available mbytes :

1714
 \\techpc22\memory\cache bytes :
 389664768
 \\techpc22\memory\cache bytes peak :
 390701056

CHAPTER 14 Fine-Tuning System Performance438

 \\techpc22\memory\committed bytes :
 1670549504
 \\techpc22\memory\commit limit :
 7191867392
 \\techpc22\memory\page faults/sec :
 617.601067565369
 \\techpc22\memory\pool nonpaged bytes :
 70008832
 \\techpc22\memory\pool paged bytes :
 154791936

If you suspect there is a problem with memory usage, you can obtain detailed
information about running processes by using Get-Process. At a PowerShell
prompt, you can view important statistics for all processes by typing the following
command:

get-process | format-table –property ProcessName,
BasePriority, HandleCount, Id, NonpagedSystemMemorySize,
PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,
PeakWorkingSet, SessionId, Threads, TotalProcessorTime,
VirtualMemorySize, WorkingSet, CPU, Path

The order of the properties in the comma-separated list determines the display
order. If you want to change the display order, simply move a property to a different
position in the list. If desired, you can redirect the output to a fi le as shown in the fol-
lowing example:

get-process | format-table –property ProcessName,
BasePriority, HandleCount, Id, NonpagedSystemMemorySize,
PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,
PeakWorkingSet, SessionId, Threads, TotalProcessorTime,
VirtualMemorySize, WorkingSet, CPU, Path > savedata.txt

Whether you write output to the prompt or to a fi le, modify the properties of the
PowerShell prompt and set the width to at least 180 characters. This ensures you can
read the output.

Monitoring Memory Paging and Paging to Disk

 Often, you’ll want to get detailed information on hard and soft page faults that are
occurring. A page fault occurs when a process requests a page in memory and the
system can’t fi nd it at the requested location. If the requested page is elsewhere in
memory, the fault is called a soft page fault. If the requested page must be retrieved
from disk, the fault is called a hard page fault.

 To see page faults that are occurring in real time, type the following at the
 command line:

 \\techpc22\memory\committed bytes :
 1670549504
 \\techpc22\memory\commit limit :
 7191867392
 \\techpc22\memory\page faults/sec :
 617.601067565369
 \\techpc22\memory\pool nonpaged bytes :
 70008832
 \\techpc22\memory\pool paged bytes :
 154791936

get-process | format-table –property ProcessName,
BasePriority, HandleCount, Id, NonpagedSystemMemorySize,
PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,
PeakWorkingSet, SessionId, Threads, TotalProcessorTime,
VirtualMemorySize, WorkingSet, CPU, Path

get-process | format-table –property ProcessName,
BasePriority, HandleCount, Id, NonpagedSystemMemorySize,
PagedSystemMemorySize, PeakPagedMemorySize, PeakVirtualMemorySize,
PeakWorkingSet, SessionId, Threads, TotalProcessorTime,
VirtualMemorySize, WorkingSet, CPU, Path > savedata.txt

 Fine-Tuning System Performance CHAPTER 14 439

get-counter "\memory\Page Faults/sec" –sampleinterval 5

Timestamp CounterSamples

--------- --------------

2/28/2009 6:00:01 PM \\techpc22\memory\page faults/sec :

 172.023153991804

2/28/2009 6:00:06 PM \\techpc22\memory\page faults/sec :

 708.944308818821

2/28/2009 6:00:11 PM \\techpc22\memory\page faults/sec :

 14.5375722784541

 Here, you check memory page faults every 5 seconds. To stop Get-Counter,
press Ctrl+C. Page faults are shown according to the number of hard and soft faults
 occurring per second. Other counters of the Memory object that you can use for
tracking page faults include the following:

 Cache Faults/sec

 Demand Zero Faults/sec

 Page Reads/sec

 Page Writes/sec

 Write Copies/sec

 Transition Faults/sec

 Transition Pages RePurposed/sec

 Pay particular attention to the Page Reads/sec and Page Writes/sec, which provide
information on hard faults. Although developers will be interested in the source of
page faults, administrators are more interested in how many page faults are occur-
ring. Most processors can handle large numbers of soft faults. A soft fault simply
means the system had to look elsewhere in memory for the requested memory page.
With a hard fault, on the other hand, the requested memory page must be retrieved
from disk, which can cause signifi cant delays. If you are seeing a lot of hard faults, you
might need to increase the amount of memory or reduce the amount of memory be-
ing cached by the system and applications.

 In addition to counters of the Memory object discussed previously, you can use
other objects and counters to check for disk paging issues. If a particular object has
multiple instances, such as when a computer has multiple physical disks or multiple
paging fi les, you can use an object instance to track a specifi c occurrence of that
object. You can also elect to track all instances of an object, such as whether you
want to monitor all physical disks on a system. Specify _Total to work with all counter
instances, or specify individual counter instances to monitor.

 Sample 14-2 provides an example of how you can use Get-Counter to get a
snapshot of disk paging. In this example, you use a counter fi le called PagePerf.txt
to specify the counters you want to track. You collect fi ve samples with an interval of

get-counter "\memory\Page Faults/sec" –sampleinterval 5

Timestamp CounterSamples

--------- --------------

2/28/2009 6:00:01 PM \\techpc22\memory\page faults/sec :

 172.023153991804

2/28/2009 6:00:06 PM \\techpc22\memory\page faults/sec :

 708.944308818821

2/28/2009 6:00:11 PM \\techpc22\memory\page faults/sec :

 14.5375722784541

CHAPTER 14 Fine-Tuning System Performance440

30 seconds between samples and save the output in a fi le called SavePageData.txt. If
you import the data into a spreadsheet or convert it to a table in a Word document,
you can make better sense of the output and gain a better understanding of how the
computer is using the page fi le and paging to disk.

SAMPLE 14-2 Checking Disk Paging

Commands

get-counter (get-content .\pageperf.txt) -maxsamples 5 `
-sampleinterval 30 > SavePageData.txt

Source for PagePerf.txt

\memory\Pages/Sec
\Paging File(_Total)\% Usage
\Paging File(_Total)\% Usage Peak
\PhysicalDisk(_Total)\% Disk Time
\PhysicalDisk(_Total)\Avg. Disk Queue Length

Monitoring Memory Usage and the Working Memory

Set for Individual Processes

You can use Get-Process to get basic memory usage for a process. The syntax you can
use is

get-process –id ProcessID

where ProcessID is the ID number of the process you want to work with. The output
from Get-Process shows you how much memory the process is currently using.
For example, if you were tracking process ID 1072, your output might look like the
 following:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 493 13 15520 13452 77 1072 svchost

In this example, the process is using 13,452 KB of memory. By watching the
memory usage over time, you can determine whether the memory usage is increas-
ing. If memory usage is increasing compared to a typical baseline, the process might
have a memory-related problem.

Sample 14-3 provides the source for a PowerShell script that checks the memory
usage of a process over a timed interval. The script expects the process ID you want to
work with to be passed as the fi rst parameter. If you do not supply a process ID, error
text is written to the output.

Commands

get-counter (get-content .\pageperf.txt) -maxsamples 5 `
-sampleinterval 30 > SavePageData.txt

Source for PagePerf.txt

\memory\Pages/Sec
\Paging File(_Total)\% Usage
\Paging File(_Total)\% Usage Peak
\PhysicalDisk(_Total)\% Disk Time
\PhysicalDisk(_Total)\Avg. Disk Queue Length

get-process –id ProcessID

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 493 13 15520 13452 77 1072 svchost

 Fine-Tuning System Performance CHAPTER 14 441

SAMPLE 14-3 Viewing Memory Usage at the PowerShell Prompt

 MemUsage.ps1

$p = read-host "Enter process id to track"
$n = read-host "Enter number of minutes to track"
for ($c=1; $c -le $n; $c++) {get-process –id $p; start-sleep -seconds 60}

 Sample output

Enter process id to track: 1072

Enter number of minutes to track: 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 497 13 15548 13464 77 1072 svchost

 494 13 15520 13452 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 493 13 15520 13452 77 1072 svchost

 495 13 15548 13464 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 In Sample 14-3, the process’s memory usage shows small variances over time, but
there isn’t a trend of increasing memory usage over time. Because of this, it is unlikely
the process has a memory leak, but to be sure you’d need to sample over a longer
period.

 You can use Get-Process to track detailed memory usage for individual processes
as well. The syntax you can use is

get-process ProcessName | format-table –property `
NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `
PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

 where ProcessName is the name of the process without the .exe or .dll. In a Power-
Shell script, such as the one shown as Sample 14-4, you can combine Get- Process and
Start-Sleep to view the memory usage for a process at timed intervals.

SAMPLE 14-4 Viewing Detailed Memory Usage

 DetMemUsage.ps1

$p = read-host "Enter process name to track"
$n = read-host "Enter number of minutes to track"
for ($c=1; $c -le $n; $c++) { get-process $p | format-table –property `
NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `
PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet
start-sleep -seconds 60}

MemUsage.ps1

$p = read-host "Enter process id to track"
$n = read-host "Enter number of minutes to track"
for ($c=1; $c -le $n; $c++) {get-process –id $p; start-sleep -seconds 60}

Sample output

Enter process id to track: 1072

Enter number of minutes to track: 1

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 497 13 15548 13464 77 1072 svchost

 494 13 15520 13452 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

 493 13 15520 13452 77 1072 svchost

 495 13 15548 13464 77 1072 svchost

 495 13 15520 13452 77 1072 svchost

get-process ProcessName | format-table –property `
NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `
PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet

DetMemUsage.ps1

$p = read-host "Enter process name to track"
$n = read-host "Enter number of minutes to track"
for ($c=1; $c -le $n; $c++) { get-process $p | format-table –property `
NonpagedSystemMemorySize, PagedSystemMemorySize, VirtualMemorySize, `
PeakVirtualMemorySize, MinWorkingSet, WorkingSet, PeakWorkingSet
start-sleep -seconds 60}

CHAPTER 14 Fine-Tuning System Performance442

 Sample output

 Nonpaged Paged Virtual Peak Min Working Peak

 System System MemorySize Virtual WorkingSet Set WorkingSet

MemorySize MemorySize MemorySize

---------- ---------- --------- ---------- --------- --------- ---------

 4776 96368 52891648 161480704 6946816 7282688

 8424 137056 61505536 161480704 8986624 9039872

 13768 121136 137351168 161480704 38670336 73658368

 13792 128904 82386944 161480704 13889536 73658368

 14320 167912 187904000 258859008 74432512 138919936

 44312 235704 221302784 429953024 65249280 278482944

 25288 156520 91754496 429953024 15536128 278482944

 30112 159376 123875328 429953024 23248896 278482944

 25296 118424 86568960 429953024 20758528 278482944

 2248 48088 24174592 429953024 2924544 278482944

 7112 105160 55832576 429953024 6393856 278482944

 5368 110960 63991808 429953024 7655424 278482944

 1472 30400 15618048 429953024 2330624 278482944

The Get-Counter properties examined in Sample 14-4 provide the following
 information:

 NonPagedSystemMemorySize Shows the amount of allocated memory
that can’t be written to disk

 PagedSystemMemorySize Shows the amount of allocated memory that is
allowed to be paged to the hard disk

 VirtualMemorySize Shows the amount of virtual memory allocated to and
reserved for a process

 PeakVirtualMemorySize Shows the peak amount of paged memory used
by the process

 WorkingSet Shows the amount of memory allocated to the process by the
operating system

 PeakWorkingSet Shows the peak amount of memory used by the process

When you focus on these properties, you are zeroing in on the memory usage of
a specifi c process. The key aspect to monitor is the working memory set. The working
set of memory shows how much memory is allocated to the process by the operating
system. If the working set increases over time and doesn’t eventually go back to base-
line usage, the process might have a memory leak. With a memory leak, the process
isn’t properly releasing memory that it’s using, which can lead to reduced perfor-
mance of the entire system.

Sample output

Nonpaged Paged Virtual Peak Min Working Peak

 System System MemorySize Virtual WorkingSet Set WorkingSet

MemorySize MemorySize MemorySize

---------- ---------- --------- ---------- --------- --------- ---------

 4776 96368 52891648 161480704 6946816 7282688

 8424 137056 61505536 161480704 8986624 9039872

 13768 121136 137351168 161480704 38670336 73658368

 13792 128904 82386944 161480704 13889536 73658368

 14320 167912 187904000 258859008 74432512 138919936

 44312 235704 221302784 429953024 65249280 278482944

 25288 156520 91754496 429953024 15536128 278482944

 30112 159376 123875328 429953024 23248896 278482944

 25296 118424 86568960 429953024 20758528 278482944

 2248 48088 24174592 429953024 2924544 278482944

 7112 105160 55832576 429953024 6393856 278482944

 5368 110960 63991808 429953024 7655424 278482944

 1472 30400 15618048 429953024 2330624 278482944

 Fine-Tuning System Performance CHAPTER 14 443

In Sample 14-4, the process’s memory usage changes substantially over the
sampled interval. Although it is most likely the process is simply actively being used
by users or the computer itself, the process should eventually return to a baseline
memory usage. If this doesn’t happen, the process might have a memory-related
problem.

Because memory is usually the primary performance bottleneck on both work-
stations and servers, I’ve discussed many techniques previously in this chapter that
you can use to help identify problems with memory. Memory is the resource you
should examine first to try to determine why a system isn’t performing as expected.
However, memory isn’t the only bottleneck. Processors, hard disks, and networking
 components can also cause bottlenecks.

445

Index

Symbols and
Numbers
- (hyphen), 14–16, 118
“” (quotation marks), 28–29,

148–150
(pound sign), 222
$ (dollar sign), 34, 54, 124, 149
, (comma), 92, 126, 160
. (period), 76
.NET Framework

available features, 242
classes/objects, 189,

202–206
/ (forward slash), 17
; (semicolon), 29, 57, 213
\ (backward slash), 76
^ (caret), 120
_ (underscore), 125
` (back apostrophe). See back

apostrophe
{} curly braces, 29, 125–126, 175

A
access control lists, 354
access rules, 293–295,

350–351, 353
Access.Application ProgID, 197
Active Directory Certificate

Services (AD CS), 19,
240, 243

Active Directory Domain
 Services (AD DS), 240, 243

Active Directory Federation
Services (AD FS), 240

Active Directory Lightweight
Directory Services (AD LDS),
240, 243

Active Directory Rights
 Management Services (AD
RMS), 240, 243

ActiveDirectory module, 79
AD CS (Active Directory

 Certificate Services), 19, 243
AD DS (Active Directory

 Domain Services), 240, 243

AD FS (Active Directory
 Federation Services), 240

AD LDS (Active Directory
Lightweight Directory
 Services), 240, 243

AD RMS (Active Directory
Rights Management
 Services), 240, 243

Add-Computer cmdlet, 11,
107, 395, 398–401

Add-Content cmdlet, 73,
287–288

addition operator, 110,
113, 122

Add-Member cmdlet, 191–193
Add-PSSnapin cmdlet, 60, 64
Add-WindowsFeature cmdlet,

239, 247–248, 250
Administrators group, 88, 305
ADRMS module, 79
adsi data type alias, 126
ADSI objects, 191
Alias provider, 63, 65
aliases

built-in, 168–169
creating, 172–174
creating profiles, 55
declaring variable

types, 129
defined, 187
execution order, 56
exporting, 172, 174–175
exporting from

sessions, 91
for data types, 126–127
functionality, 168
importing, 173–175
importing into

sessions, 91
internal commands and,

169–172
profile support, 214
remote commands, 88
variable scope, 136

AliasProperty extension, 191
All Users profile, 56
AllSigned execution policy, 18

Application log, 101, 104,
202, 362

applications
file extensions, 59
managing, 409–430
memory leaks, 412

archiving event logs, 370–371
arithmetic expressions, 109
arithmetic operators

defined, 109
precedence order,

112–113
supported set, 110

array data type alias, 126
arrays. See also collections

arithmetic operators, 110
assigning values, 163–164
assigning values to

 variables, 126
associative, 159
cast array structure,

162–163
comparison operators,

115–117, 154
concatenating, 155
defined, 112, 126, 159
examining values, 225
Length property, 161
logical operators, 121
multidimensional, 159,

165–166
multiplying, 156
one-dimensional,

159–161
removing values, 163–164
SetValue method, 163
strict types, 164
Switch constructs, 229
three-dimensional, 159

assemblies, 204
assignment expressions, 109
assignment operators

defined, 109
precedence order,

113, 122
supported set, 110–111

assoc command, 59, 170

446

associative arrays, 159
atomic permissions, 300
auditing

configuring, 304–307
registry, 357–360

authentication
enabling, 86
managing computers, 397
specifying credentials,

254, 257
automatic variables

defined, 54, 138
PowerShell support, 123,

138–143, 146, 153,
178, 214

B
back apostrophe

as escape character,
149–150

for continuation lines,
101, 105, 214

Background Intelligent
Transfer Service (BITS), 242,
244, 251

background jobs, 97–100.
See also remote background
jobs

background processes, 411
backups, 245
backward apostrophe (`), 36
backward slash (\), 76
base priority (process), 411
Begin code block, 177
BestPractices module, 79
binary AND operator, 121
binary NOT operator, 121
binary OR operator, 121
binary XOR operator, 121
BitLocker, 242, 244
BITS (Background Intelligent

Transfer Service), 242, 244,
251

bool data type alias, 126
Boolean values, 115
Bourne Shell (SH), 2
BranchCache, 241–242
break command, 170
break statement, 230
built-in aliases, 168–169
built-in commands. See

cmdlets
built-in functions, 181–185
byte data type alias, 127

C
C Shell (CSH), 2
CA (Certificate Authority),

19, 240
call command, 170
caret (̂), 120
case sensitivity

cmdlets, 9, 39, 44
comparison operators,

113
regular expressions, 151
variable names, 125

cast array structure, 162–163
cat alias, 168
cd alias, 169
cd command, 170
CEnroll.Cenroll ProgID, 197
Certificate Authority (CA),

19, 240
certificate enrollment, 240
Certificate provider, 20, 23,

65, 71
Certificate.Format.ps1xml, 190
certificates

Cert provider, 20
creating, 19
Other People’s, 19
personal, 19, 21
self-signed, 19

certificates store
accessing, 20
functionality, 19
viewing information,

19–20
char data type alias, 127
chdir alias, 169
chdir command, 170
Checkpoint-Computer cmdlet,

11, 405–406
claims-aware agent, 240
classes

.NET Framework, 202–206
object, 186

clear (clr) alias, 168
Clear-Content cmdlet, 73,

287–288
Clear-EventLog cmdlet, 11,

107, 365, 371
Clear-History cmdlet, 31
Clear-Host cmdlet, 12, 168,

170, 182, 223
Clear-Item cmdlet, 68, 218
Clear-ItemProperty cmdlet, 68
Clear-Variable cmdlet, 12, 124

CliXML (Constraint Language
in XML), 97

cls command, 170
CMAK (Connection Manager

Administration Kit), 242
cmdlet parameters

commonly used, 15–16,
38–44

dash symbol, 14
dynamic, 71
position sensitivity, 14
risk mitigation support,

15–16
cmdlets

accessing security de-
scriptors, 289

adding to data strings,
153

case sensitivity, 9, 39, 44
common verbs used,

9–10
commonly used, 11–13
configuring System

Restore, 404–405
creating transcripts, 216
defined, 9
execution order, 57
exporting from sessions,

91
formatting, 38–45
getting information, 13
help documentation, 14
importing into sessions,

91
listing in snap-ins, 62–63
managing computers,

395–398
managing data stores,

65–70
managing file content,

286–287
managing system

 services, 375–377
output, 46–47
PATH environment

 variable, 17
performance monitoring,

409–411, 430–431
provider drive support,

72–77
remote background jobs,

97–100
remote commands,

88–91
remote sessions, 88–91

associative arrays

447

running, 13
running from command

shell, 28
security descriptors, 289
Server Manager support,

238–239
snap-in support, 62
transaction support,

218–220
typical errors, 14
variable support, 123–124
viewing complete list, 13
Windows PowerShell

extensions, 60–61
working with event logs,

364–365
collections. See also arrays

comparison operators,
115–117

defined, 159
grouping operators, 111

colon (:), 71, 189
color command, 170
COM (Component Object

Model), 191, 197–201,
280, 318

comma (,), 92, 126, 160
command history

accessing stored
 commands, 9

changing history size, 8
maximum buffer size, 8

command mode, 34–35
command path

defined, 57
managing, 57–58
managing file associa-

tions, 59–60
managing file extensions,

59–60
search order, 58
setting, 58
SETX command, 58

command prompt
powershell command,

29–30
starting Windows

 PowerShell ISE, 5
command shells

calling ASSOC, 59
calling FTYPE, 59
full-featured, 2
internal commands,

169–172
objects in output, 37

running cmdlets, 28
running scripts, 30
starting Windows

 PowerShell from, 3
commands. See also external

commands; remote
 commands

adding to transactions,
221

basic line editing, 31–33
command history, 8–9
executing, 25–26
execution order, 56–57
functions and, 54
grouping operators, 111
initializing the

 environment, 28–29
listing specific, 13
output from parsing, 37
parsing values, 33–34
redirection support, 28
script support, 213
Server Manager, 238–239
storing in scripts, 101, 105
syntax rules, 25
Windows Command

Shell, 169–172
Windows PowerShell ISE

support, 5
comments in scripts, 222–225
Compare-Object cmdlet,

11, 168
comparison expressions, 109
comparison operators

Boolean values, 115
comparison examples,

115–117
defined, 109, 113
precedence order, 122
regular expressions,

117–120
string support, 154
supported set, 113–114
wildcard characters, 116

Complete-Transaction cmdlet,
218, 221

Component Object Model. See
COM (Component Object
Model)

computer accounts, renaming,
398

computer name, 253–255
computers

adding to workgroups,
400–401

cmdlets for, 395–398
joining to domains,

398–400
managing, 395–403
managing restart/shut-

down, 402–403
removing from domains,

401–402
removing from work-

groups, 401–402
renaming accounts, 398

concatenating
arrays, 155
strings, 155

conditional statements
comparison operators, 113
else clause, 64, 81
if not statement, 226
if statement, 226–228
if...else statement,

225–228
if...elseIf...else statement,

225–228
Switch construct, 226,

229–231
configuration errors, handling,

249–250, 346
Connection Manager Adminis-

tration Kit (CMAK), 242
consoles. See Windows

 PowerShell console
Constraint Language in XML

(CliXML), 97
contains operator, 114, 116
continue clause, 230
control loops, 231–235
ConvertFrom-SecureString

cmdlet, 11
ConvertFrom-StringData

cmdlet, 153–154
converting

data types, 130–135
strings, 157–159

Convert-Path cmdlet, 75
ConvertTo-SecureString

 cmdlet, 11, 63
copy (cp) alias, 168
copy command, 170
Copy-Item cmdlet

alias support, 168
description, 68, 170
managing files/

directories, 284
registry keys/values, 343
transcript support, 218

Copy-Item cmdlet

448

Copy-ItemProperty cmdlet,
69, 343

Credential object, 257
credentials, authentication,

254, 257
CSH (C Shell), 2
CSV file extension, 370
curly braces { }, 29, 125–126,

175
current user

determining, 254–255
logon domain, 254

Current User profile, 55
custom consoles, 82–83
custom events, writing,

371–373

D
DAMC (Direct Access Manage-

ment Console), 243
dash (-), 14–16, 118
data stores, 62, 65–70
data strings, 152–154
data types

aliases supported,
126–127

assigning, 126–130
converting, 130–135
objects and, 37
Switch constructs, 229

date command, 170
datetime data type alias, 127
DateTime object, 257
debugging message stream, 45
Debug-Process cmdlet, 11, 410
decimal data type alias, 127
del alias, 169
del command, 170
Deployment Server, 242
device drivers, managing,

275–279
DFS (Distributed File System),

241, 247, 251–252
DFS Replication log, 362
DHCP (Dynamic Host

 Configuration Protocol),
240, 243, 319, 326

Diagnostics.Format.ps1xml,
190

diff alias, 168
digital certificates. See

 certificates
dir alias, 168
dir command, 57, 170

Direct Access Management
Console (DAMC), 243

directories
command path, 59
configuring auditing,

304–307
configuring permissions,

296–304
copying, 284–306
creating, 283–286
deleting, 286
managing, 283–286
moving, 285
remote commands

and, 88
renaming, 285–286
slash separators, 17

Directory Service log, 362
Disable-ComputerRestore

cmdlet, 405
Disable-PSRemoting function,

182
Distributed File System (DFS),

241, 247, 251–252
Distributed Scan Management

Server, 241
division operator, 110, 113, 122
DLL file extension

assembly support, 204
module support, 77
viewing process usage,

421–423
Windows PowerShell

extensions, 62
DNS (Domain Name Server),

241, 244
DNS Server log, 362
Do Until loops, 231, 235
Do While loops, 231, 235
dollar sign ($), 34, 54, 124, 149
domain controllers, 240
Domain Name Server (DNS),

241, 244
domains

determining, 254–255
joining computers,

398–400
removing computers,

401–402
working with remote

computers, 86
dot notation, 196
DotNetTypes.Format.ps1xml,

190
double data type alias, 127

double-quoted strings,
148–150

dpath command, 170
Dynamic Host Configuration

Protocol (DHCP), 240, 243,
319, 326

dynamic IP addressing,
326–328

E
E mathematical constant, 130
echo alias, 169
echo command, 170
Enable-ComputerRestore

cmdlet, 405–406
Enable-PSRemoting cmdlet,

86
Enable-PSRemoting function,

182
encryption, 88, 242
End code block, 177
endlocal command, 170
Enter-PSSession cmdlet, 90,

96, 100
environment initialization.

See execution environment
initialization

Environment provider, 63, 65
environment variables. See

also PATH environment
variable

$LogCommandHealth-
Event, 372

$LogCommandLifecycle-
Event, 372

$LogEngineHealth Event,
372

$LogEngineLifecycle-
Event, 372

$LogProviderHealth-
Event, 372

$LogProviderLifecycle-
Event, 372

changing, 148
defined, 54, 138
EventDescr, 373
EventID, 373
EventSource, 372
EventType, 373
functionality, 147
listing, 147
LogName, 372
PowerShell support, 123
SystemRoot, 3

Copy-ItemProperty cmdlet

449

working environment
and, 254

writing custom events,
371–373

epal alias, 168
epcsv alias, 168
equals operator, 114–115, 125,

418–419
equals sign (=), 34
erase alias, 169
erase command, 170
error handling

configuration errors,
249–250

nonterminating errors, 14
redirecting errors, 51–52
removal errors, 252
terminating errors, 14

error stream, 45
escape codes in strings,

150–152
event logs

archiving, 370–371
clearing, 370–371
commands supporting,

364–365
filtering, 366–369
managing, 361–375
setting options, 369–370
types supported, 362–363
viewing, 366–369
writing custom events,

371–373
Event Viewer, 364, 370–371,

374–375
Eventcreate utility, 372
EventDescr environment

 variable, 373
EventID environment variable,

373
events

common properties, 364
levels categorized, 363
managing, 361–375
monitoring, 366

EventSource environment
variable, 372

EventType environment
 variable, 373

EVTX file extension, 370
Excel.Application ProgID, 197
Excel.Sheet ProgID, 197
exceptions, parsing, 36–37
Exchange Management Shell,

62

Exchange Server, 62, 82–84
execution environment

 initialization
invoking Windows

 PowerShell, 28
nested consoles, 30
passing startup

 parameters, 26–28
running commands,

28–29
running scripts, 30

execution order
arithmetic operators,

112–113
commands, 56–57
comparison operators,

112–113
for all operators, 122
grouping operators,

112–113
precedence operators,

114
execution policy

AllSigned, 18
functionality, 17–19
Get-ExecutionPolicy

cmdlet, 11, 17
RemoteSigned, 18
Restricted, 18
Set-ExecutionPolicy

cmdlet, 11, 18
Unrestricted, 18

exit command, 170
Exit-PSSession cmdlet, 91,

96, 101
Export-Alias cmdlet, 11, 168,

172, 174–175
Export-Console cmdlet, 60, 62
Export-Counter cmdlet, 12, 430
Export-Csv cmdlet, 168
exporting

aliases, 172, 174–175
performance counter

data, 430
session elements, 91
snap-ins, 60

Export-PSSession cmdlet, 91
expression mode, 34–35
expressions. See also regular

expressions
arithmetic, 109
assignment, 109
comparison, 109
defined, 109
grouping operators, 111

in strings, 149
operators and, 109

extended functions, 177–178
external commands

execution order, 57
functionality, 16–17
PATH environment vari-

able, 16, 57

F
failover clustering, 243–244
FailoverClusters module, 79
Fax Server, 241, 244
features

adding, 247–248
checking installed,

245–247
cmdlet support, 238–239
component names,

242–245
defined, 237
handling configuration

errors, 249–250
handling removal errors,

252
installing, 247–250
removing, 250–251
Server Manager, 242–245
uninstalling, 250–252

file associations
creating, 60
defined, 59
file extensions, 59
managing in command

path, 59–60
file extensions, 59–60. See also

specific file extensions
File Replication Service, 241
File Replication Service log,

362
File Server, 241
File Services, 241, 244
file types, 59–60
files

configuring auditing,
304–307

configuring permissions,
296–304

copying, 284–306
copying command path,

58
creating, 283–286
deleting, 286
execution order, 57

files

450

managing, 283–287
moving, 285
reading content, 288
remote commands

and, 88
renaming, 285–286
writing content, 288

FileSystem provider, 63, 65, 75
FileSystem.Format.ps1xml, 190
FileTransfer module, 80
filter functions, 178
filter operators, 418–420
filtering

event logs, 366–369
process output, 418–420

firewalls. See Windows
Firewall

firmware, checking, 267–268
fl alias, 168
float data type alias, 127
for command, 170
For loops, 231–233
foreach alias, 168
ForEach loops, 231, 233–234,

294
ForEach-Object cmdlet, 168
Format-Custom cmdlet, 39
Format-List cmdlet, 38, 63,

168, 179, 341
Format-Table cmdlet, 38, 41,

92, 107, 168
formatting

cmdlets, 38–45
strings, 120, 155, 157–159

Format-Wide cmdlet, 38, 40,
168

forward slash (/), 17
Forwarded Events log, 362
FQDN (fully qualified domain

name), 377
ft alias, 168
ftype command, 170
FTYPE command, 59
fully qualified domain name

(FQDN), 377
function definitions, 181
Function provider, 63, 65
functions

built-in, 181–185
code blocks, 177–178
creating, 175–176
creating modules, 61
creating profiles, 55
data strings and, 153
defined, 54, 175

execution order, 56
exporting from sessions,

91
extended, 177–178
filter, 178
grouping operators, 111
importing into sessions,

91
parameter support, 176
profile support, 214
remote commands, 88
setting parameter values,

179
snap-in support, 62
variable scope, 136

fw alias, 168

G
gal alias, 168
gcm alias, 168
Get-Acl cmdlet, 63, 289–291,

347, 349
Get-Alias cmdlet, 11, 151,

168, 172
Get-AuthenticodeSignature

cmdlet, 11, 63
Get-ChildItem cmdlet

associated alias, 168
checking printer drivers,

318
-CodeSigningCert

 parameter, 21, 71
description, 66
dir command support, 20,

57, 170
listing available functions,

54, 181
listing environment

variables, 147
Mode property, 294
module support, 63
navigating registry, 338,

340
obtaining reference

objects, 291
viewing directories, 283
viewing files, 283
viewing provider drive

contents, 71
get-command, 13
Get-Command cmdlet, 11,

62–63, 168, 179
Get-ComputerRestorePoint

cmdlet, 405, 407–408

Get-Content cmdlet
accessing file content, 288
alias support, 168
description, 73, 172, 286
example, 104

Get-Counter cmdlet
description, 11
performance monitoring,

430–431
remote job execution, 107
resolving performance

issues, 436–443
tracking performance

data, 431–436
Get-Credential cmdlet, 11,

254, 257, 397, 432
Get-Date cmdlet, 11, 254–256
Get-Event cmdlet, 365
GetEvent.Format.ps1xml, 190
Get-EventLog cmdlet, 11, 107,

365–367, 371
Get-EventSubscriber cmdlet,

365
Get-ExecutionPolicy cmdlet,

11, 17
Get-Help cmdlet, 13, 63, 100,

108, 151
Get-History cmdlet, 31, 63, 168
Get-Host cmdlet, 11
Get-HotFix cmdlet, 11, 107,

257–260
Get-Item cmdlet

checking printer drivers,
318

description, 66
dynamic parameters, 71
examining function

definitions, 181
examining path values, 147
viewing provider drive

contents, 71
Get-ItemProperty cmdlet,

69, 339
Get-Job cmdlet, 98, 102–103
Get-Location cmdlet, 12, 74,

76, 168
Get-Member cmdlet, 41, 63,

186–188
Get-Module cmdlet, 60,

78–79, 81
Get-Process cmdlet

associated alias, 168
-Descending parameter,

44
description, 12

FileSystem provider

451

examining processes,
412–415, 438

examining relationships,
420–421

filtering process output,
419–420

object types and, 186
parsing assigned values,

35
processing remotely,

92, 94
properties supported,

415–418
running jobs noninterac-

tively, 107
system performance,

410–411, 436–443
viewing lists of DLLs,

421–423
working with objects,

186, 188
Get-PSDrive cmdlet

description, 12, 65
example, 178, 192
getting provider

 information, 71
viewing available drives,

282
Get-PSProvider cmdlet, 61, 64,

71, 283
Get-PSSession cmdlet, 90
Get-PSSnapin cmdlet, 61–63
GetS function, 214
Get-Service cmdlet

associated alias, 168
creating aliases, 174
default format, 39
description, 12, 375,

378–379
example, 14
-GroupBy parameter, 42
module support, 63
-Property parameter, 41
running jobs noninterac-

tively, 107
working with objects, 186

Get-Transaction cmdlet, 218,
221

Get-Variable cmdlet, 9, 12, 54,
123, 125, 168

Get-WindowsFeature cmdlet,
238–239, 246–247

Get-WinEvent cmdlet, 63, 107,
364, 366

GetWinRm function, 175, 214

Get-WmiObject cmdlet
checking computers, 264
getting printer informa-

tion, 315–316
getting share information,

310–311
managing processes,

425–426
queries to multiple

 computers, 315, 317
service management,

388, 390
working remotely, 107

Get-WSManInstance cmdlet, 63
gl alias, 168
global scope, 135–136
goto command, 170
GPMC (Group Policy Manage-

ment Console), 243
gps alias, 168
gr alias, 214
greater than operator,

114–115, 418–419
greater than or equal opera-

tor, 114–115, 418–419
group alias, 169
Group Policy, 18, 305
Group Policy Management

Console (GPMC), 243
grouping objects, 42–43
grouping operators, 111–112,

122
Group-Object cmdlet, 11, 39,

42, 169, 367
GroupPolicy module, 80
groups

audit rules, 305
determining availability,

265–267
listing, 258
registry permissions, 352

gs alias, 214
gsv alias, 168
gv alias, 168

H
hard disks

checking, 271–275
monitoring paging,

438–439
hardware. See system

 hardware
Hardware Events log, 362
hashtable data type alias, 127

headers in scripts, 223
Health Registration Authority,

241
Help function, 183
Help.Format.ps1xml, 190
here-string, 152–154
hexadecimal numbers, 130
history (h) alias, 168
HKEY_CLASSES_ROOT root

key, 336
HKEY_CURRENT_CONFIG root

key, 336
HKEY_CURRENT_USER root

key, 336
HKEY_LOCAL_MACHINE root

key, 71, 336
HKEY_USERS root key, 336
HKLM drive, 71, 75
HNetCfg.FwMgr COM object,

197, 329
HNetCfg.FWOpenPort COM

object, 333–334
Host Credential Authorization

Protocol, 241
hotfixes, 11, 107, 257–260
HTTPS protocol, 86, 93
Hyper-V, 241, 244
hyphen (-), 14–16, 118

I
ICMP (Internet Control

 Message Protocol), 396
Identity Management for

UNIX, 240
if command, 170
if not statement, 226
if statement, 226–229
if...else statement, 225–228
if...elseIf...else statement,

225–228
image name (process), 411
Import-Alias cmdlet, 11, 169,

173, 175
Import-Counter cmdlet, 12,

430, 433
Import-Csv cmdlet, 169
importing

aliases, 173–175
elements into sessions, 91
modules, 61, 81
performance counter

data, 430
Import-Module cmdlet, 61,

81, 249

Import-Module cmdlet

452

Import-PSSession cmdlet, 91
index position (arrays), 160, 165
Indexing Service, 241
initialization scripts, 84
initializing environment.

See execution environment
initialization

initializing statements in
scripts, 222–225

input, redirecting, 51–52
InstallUtil tool, 61
instance methods, 188
instance properties, 188
int data type alias, 127
interactive sessions

ending, 101
starting jobs, 97, 100–104

Internet Control Message
Protocol (ICMP), 396

Internet Explorer, 198, 200
Internet Properties dialog

box, 20
Internet Storage Name Server

(ISNS), 243
InternetExplorer.Application

ProgID, 198
inv alias, 214
Invoke-Command cmdlet

-AsJob parameter, 96, 104
creating registry keys,

342
-Credential parameter, 92
description, 11, 88, 100
-HideComputerName

parameter, 92
navigating registry, 341
on remote computers, 284
querying multiple

 computers, 282
running jobs noninterac-

tively, 104, 106
running Start-Job, 99
serialized objects, 97
-Session parameter, 94
viewing remote files, 104

Invoke-History cmdlet, 169
Invoke-Item cmdlet, 68
Invoke-WmiMethod cmdlet,

100, 393
IP addresses

dynamic, 326–328
remote commands, 92
static, 319, 323–326
TCP/IP support, 319
testing, 397

ipal alias, 169
ipcsv alias, 169
Is operator, 122
IsMatch method, 120
ISNS (Internet Storage Name

Server), 243

J
joining strings, 120, 155–156
Join-Path cmdlet, 74

K
kill alias, 169
KSH (Korn Shell), 2

L
language keywords, 57
less than operator, 114–115,

418–419
less than or equal operator,

114–115, 418–419
like operator, 114, 116–117
Limit-EventLog cmdlet, 12,

107, 365, 369–370
ListType function, 279
local print devices, 314
local scope, 135, 137, 176
Local Security Settings

(secpol.msc), 93
LocalService account, 388
LocalSystem account, 388
LogFile.text, 239
logical AND operator, 121
logical NOT operator, 121
logical operators, 109, 121, 227
logical OR operator, 121
logical XOR operator, 121
LogName environment

 variable, 372
long data type alias, 127
loops, control, 231–235
LPD Service, 241
ls alias, 168

M
MakeCert.exe utility, 21–23
MAPI (Messaging Application

Programming Interface),
198

MAPI.Session ProgID, 198

match operator, 114, 116–117,
418–419

md command, 171
Measure-Command cmdlet, 11
memory

checking, 269–271
monitoring paging,

438–439
monitoring usage,

440–443
process issues, 411–412
working memory set,

440–443
Memory object, 436, 439
Message Queuing (MSMQ),

243
Messenger.MessengerApp

ProgID, 198
methods

defined, 185
instance, 188
object, 37, 186, 188–190

Microsoft Exchange Server,
62, 82–84

Microsoft logs, 362
Microsoft Office Access, 197
Microsoft Office Excel, 197,

201
Microsoft Office Outlook, 198
Microsoft Office Outlook

Express, 198
Microsoft Office PowerPoint,

198
Microsoft Office Publisher, 198
Microsoft Office Word, 198
Microsoft SharePoint Services,

198
Microsoft Speech API, 198,

200
Microsoft Update, 198, 238
Microsoft Windows systems

command-line
 environment, 2

evaluating hardware,
267–280

getting basic information,
253–257

managing processes,
409–430

monitoring, 436–443
optimizing, 409
system configuration,

257–267
working environment,

257–267

Import-PSSession cmdlet

453

Microsoft.PowerShell.Core
snap-in, 63

Microsoft.PowerShell.
Diagnostic snap-in, 63

Microsoft.PowerShell.Host
snap-in, 63

Microsoft.PowerShell.
Management snap-in, 63

Microsoft.PowerShell.Security
snap-in, 63

Microsoft.PowerShell.Utility
snap-in, 63

Microsoft.PowerShell.WSMan.
Management snap-in, 63

Microsoft.Update.AutoUpdate
ProgID, 198

Microsoft.Update.Installer
ProgID, 198

Microsoft.Update.Searches
ProgID, 198

Microsoft.Update.Session
ProgID, 198

Microsoft.Update.SystemInfo
ProgID, 198

Microsoft.Win32.Registry
class, 203

Microsoft.Win32.RegistryKey
class, 203

minishells, 82
mkdir command, 171
Mkdir function, 183
mklink command, 171
module properties

Author, 78
CLRVersion, 78
CompanyName, 78
Copyright, 78
Description, 78
FormatsToProcess, 78
GUID, 78
ModuleVersion, 78
NestedModules, 78
PowerShellVersion, 78
RequiredAssemblies, 78
TypesToProcess, 78

modules
common properties, 78
creating, 61
defined, 77
functionality, 77
getting information, 60
importing into sessions,

61, 81
registering components,

81

removing from sessions,
61, 81

Modulus function, 111
modulus operator, 110
monitoring Windows

 systems. See performance
 monitoring

More function, 183
mount alias, 169
move command, 171
Move-Item cmdlet

description, 67, 171
managing files/

directories, 285
registry keys/values, 344
transcript support, 218

Move-ItemProperty cmdlet,
69, 344

MSMQ (Message Queuing),
243

MSU file extension, 238
multidimensional arrays, 159,

165–166
multiline comments, 222
multiline strings, 152–154
multiplication operator, 110,

113, 122, 156

N
namespaces, 241
navigating

arrays, 159–166
collections, 159–166
expressions, 109–122
operators, 109–122
provider drives, 71–77
registry, 338–341
strings, 148–159
values, 122–148
variables, 122–148
Windows PowerShell

extensions, 72–77
negation operator, 110
nested consoles, 30
network adapters, 319–322
Network and Sharing Center,

310
Network File System (NFS), 241
Network Information Services

(NIS), 240
Network Load Balancing

(NLB), 243–244
Network Policy and Access

Services (NPAS), 241, 244

Network Policy Server, 241
network print devices, 314
network shares

changing settings,
311–313

creating, 313
deleting, 314
getting information,

310–311
managing, 309–314

NetworkLoadBalancing-
Clusters module, 80

NetworkService account, 388
New-Alias cmdlet, 11, 172–173
New-EventLog cmdlet, 12,

107, 365
New-Item cmdlet

alias support, 169
description, 66
registry keys/values, 342
transaction support, 218
viewing files/directories,

283
New-ItemProperty cmdlet,

69, 342
New-Module cmdlet, 61, 78
New-ModuleManifest cmdlet,

61
New-MshDrive cmdlet, 169
New-Object cmdlet, 11, 196,

200, 202
New-PSDrive cmdlet, 12, 66,

283
New-PSSession cmdlet

establishing remote
 sessions, 341

functionality, 89, 91, 94
persistent connections, 96

New-Service cmdlet, 12, 377
New-Variable cmdlet, 12,

123, 169
NFS (Network File System), 241
ni alias, 169
NIS (Network Information

Services), 240
NLB (Network Load

 Balancing), 243–244
nonterminating errors, 14
not contains operator,

114, 116
not equals operator, 114–115,

418–419
not like operator, 114, 116–117
not match operator, 114,

116–117

not match operator

454

NPAS (Network Policy and
 Access Services), 241, 244

NTFS file system, 208, 289, 296
NTFS permissions, 309
numbers

accessing values, 122
arithmetic operators,

110
array example, 160
assigning values to

 variables, 126
comparison operators,

114
hexadecimal, 130

nv alias, 169

O
object behavior, 185
object classes, 186
object methods, 37, 186,

188–190
object properties, 37, 186,

188–190
object serialization, 96–97
object state, 185–186
object types, 185–186,

190–194
objects

.NET Framework,
202–206

Access property, 293
accessing values, 122
assigning values to

 variables, 126
BackgroundColor

 property, 195
BufferSize property, 196
COM, 197–201
CursorPosition property,

196
defined, 37, 185
ForegroundColor

 property, 195
getting snap-ins, 61
grouping, 42–43
Height property, 196
logical operators, 121
MaxPhysicalWindowSize

property, 196
MaxWindowSize

 property, 196
overview, 185–188
sorting, 43–44
Width property, 196

WindowPosition
 property, 196

WindowsTitle property,
195

WindwSize property,
196

WMI, 206–211
one-dimensional arrays,

159–161
operators

arithmetic, 109–110,
112–113

assignment, 109–111,
113, 122

comparison, 109,
113–120, 122

data storage concepts,
113

defined, 109
filter, 418–420
grouping, 111–112, 122
logical, 109, 121, 227
pipeline, 39
precedence order, 112
string, 154–159
type, 109, 121

optimization, 409
Other People’s certificates, 19
Out-File cmdlet, 49, 52
Out-GridView cmdlet, 50
Out-Host cmdlet, 50
Outlook.Application ProgID,

198
OutlookExpress.MessageList

ProgID, 198
Out-Null cmdlet, 50
Out-Printer cmdlet, 50
output

explicitly writing, 46–47
filtering for processes,

418–420
finalizing, 49–50
formatting cmdlets,

38–45
from parsing, 37
redirecting, 51–52
rendering, 49–50
writing to output streams,

45–49
output cmdlets, 46–47
output streams, 45–49
Out-String cmdlet, 50
ownership

permissions and, 304
registry keys, 356–357

P
page faults, 438–439
parsing

code blocks, 29
commands, 33–34
exceptions, 36–37
output from, 37
overview, 33–34
script blocks, 36
values, 34–36
via command mode, 34
via expression mode, 34

partitions, checking, 271–275
password synchronization, 240
path command, 171
PATH environment variable

cmdlets and, 17
external commands, 57
functionality, 16
remote support, 87
SETX command, 58
updating, 58

pattern matching, 116–119,
151

pause command, 171
Peer Name Resolution

 Protocol (PNRP), 243
performance monitoring

cmdlets for, 430–431
defined, 409, 430
detecting issues, 436–443
for processes, 425–430
memory paging, 438–439
memory usage, 440–443
resolving issues, 436–443
system events, 366
system resource usage,

436–438
tracking data, 431–436

period (.), 76
permissions

atomic, 300
audit rules, 305
configuring, 296–304,

351–356
creating directories, 284
creating files, 284
NTFS, 309
remote commands

and, 88
setting basic, 296–299
setting special, 300–303
share, 309
taking ownership, 304

NPAS (Network Policy and Access Services)

455

personal certificates, 19, 21
physical memory, 269–271
Pi mathematical constant, 130
Ping-Computer cmdlet, 12
pipeline operator, 39, 154, 186
piping

defined, 25, 29
example, 13, 37
function support, 175
redirection techniques,

51–52
plus operator, 161, 164
PNRP (Peer Name Resolution

Protocol), 243
popd command, 171
Pop-Location cmdlet, 12,

74, 171
pound sign (#), 222
PowerPoint.Application

ProgID, 198
PowerShell. See Windows

PowerShell
powershell command

-Command parameter,
27–29

-EncodedCommand
parameter, 27

-ExecutionPolicy
 parameter, 27

-File parameter, 27, 30
-InputFormat parameter,

27
-NoExit parameter, 27–28
-NoLogo parameter,

26–28
-Noninteractive

 parameter, 27
-NoProfile parameter,

27–28
-OutputFormat

 parameter, 27
passing startup

 parameters, 26–28
-PSConsoleFile

 parameter, 28
script blocks, 29
-Sta parameter, 28
-Version parameter, 28
-WindowStyle parameter,

28
PowerShell drives

adding, 282–283
managing, 281–286
removing, 282–283
viewing availability, 282

PowerShellCore.Format.
ps1xml, 190

PowerShellTrace.Format.
ps1xml, 190

precedence order. See
 execution order

preference variables
defined, 54, 138
PowerShell support, 123,

143–146
Print and Document Services,

241, 244
print servers, 241, 314–315
printers

checking drivers,
317–318

getting information,
315–317

managing, 314–319
private scope, 135, 138
Process code block, 177
process ID, 411, 420, 424–425,

440
processes

background, 411
base priority, 411
common problems,

411–412
examining, 412–418
filtering output, 418–420
image name, 411
managing, 409–430
monitoring, 425–430
process ID, 411
stopping, 424–425
system, 411–412
threads in, 427–428
user, 411–412
viewing lists of DLLs,

421–423
viewing relationship

between services and,
420–421

working memory set,
440–443

processors, checking,
269–271

profiles
command path, 57–60
copying, 215
creating, 55–56
defined, 17, 53
execution order, 56–57
remote commands

and, 88

script support, 214–216
storing elements, 53–54
variable support, 123
Windows Firewall

 support, 328
prompt command, 171
Prompt function, 183–184, 214
Properties dialog box, 7–8, 30
provider drives

cmdlet support, 72–77
current working location,

75–76
defined, 71
managing data, 71
navigating, 71–77
relative references, 71
removing, 72
special characters, 76

providers
built-in, 64–65
cmdlets support, 65–70
dynamic parameters, 71
functionality, 70
getting information, 61
listing available, 64–65
removing snap-ins, 71
snap-in support, 62

ps alias, 168
PS1 file extension, 17, 53, 213
PS1XML file extension, 77
PSAdapted view, 191
PSBase view, 191
PSC1 file extension, 62
PSD1 file extension, 77
PSDiagnostics module, 80–81
PSExtended view, 191
PSM1 file extension, 77, 81
psobject data type alias, 127
PSObject view, 191–192
PSTypeNames view, 191
Publisher.Application ProgID,

198
publishers, 19
pushd command, 171
Push-Location cmdlet, 12,

74, 171
pwd alias, 168

Q
queries

creating, 374–375
to multiple computers,

282, 315, 317
WMI, 206–211

queries

456

quotation marks
command redirection, 28
in strings, 148–150
script blocks, 29

qWave, 243

R
r alias, 169
range operator, 121, 126, 161
rd alias, 169
rd command, 171
RD Connection Broker, 242
RD Gateway, 242
RDC (Remote Differential

Compression), 243
RDS (Remote Desktop

 Services), 241–242, 244
Read-Host cmdlet, 12, 150,

227
reading file content, 288
Receive-Job cmdlet

example, 105
functionality, 98, 103
-Keep parameter, 100

recovery modes, 383–387
redirection

function support, 175
quotation marks for, 28
techniques for, 51–52

Reflection.Assembly class, 205
regex data type alias, 127
Register-EngineEvent cmdlet,

365
registering

module components, 81
snap-ins, 61, 63

Register-ObjectEvent cmdlet,
365

Register-WmiEvent cmdlet,
365

registry
access rules for, 350–351,

353
auditing, 357–360
cautions when editing,

336
comparing

 configurations, 346
configuring permissions,

351–356
execution policy changes,

18
file associations, 60
file types, 60

functionality, 335
managing security set-

tings, 347–357
navigating, 338–341
securing, 348–350
viewing security settings,

347–357
registry keys

accessing, 338
comparing, 346–347
configuring permissions,

351
copying, 343
creating, 342–343
deleting, 345
list of supported, 336
managing, 341–345
moving, 344
renaming, 344–345
taking ownership,

356–357
Registry provider, 63, 65, 71,

335, 338
registry values

accessing, 338, 340
comparing, 346
copying, 343
creating, 342–343
deleting, 345
managing, 341–345
moving, 344
renaming, 344–345
summary listing, 336–337

Registry.Format.ps1xml, 190
regular expressions

case-sensitive matches,
151

comparison operators,
117–120

operator support, 109
rem command, 171
Remote Access Service, 241
Remote Assistance, 243
remote background jobs

cmdlet support, 97–100
establishing, 97–106
running noninteractively,

104–106
starting in interactive

sessions, 100–104
working environment, 53

remote commands
cmdlets supported,

88–91
enabling, 85–87

invoking, 92–93
object serialization,

96–97
remote execution, 87–88

Remote Desktop Server, 241
Remote Desktop Services

(RDS), 241–242, 244
Remote Differential Compres-

sion (RDC), 243
Remote Server Administration

Tools (RSAT), 243–244
remote sessions

cmdlet support, 88–91
establishing, 94–97
invoking, 94–96
object serialization,

96–97
persistent connections,

96
remote execution, 96–97
working environment,

53, 94
RemoteDesktopServices

module, 80
RemoteSigned execution

policy, 18
removal errors, handling, 252
Remove-Computer cmdlet, 11,

107, 395, 401–402
Remove-Event cmdlet, 365
Remove-EventLog cmdlet,

12, 107
Remove-Item cmdlet

alias support, 169, 173
deleting directories/

files, 286
description, 67, 170–171
registry keys/values, 345
transaction support, 218

Remove-ItemProperty cmdlet,
70, 345

Remove-Job cmdlet, 98
Remove-Module cmdlet,

61, 81
Remove-PSDrive cmdlet, 12,

66, 72, 283
Remove-PSSnapin cmdlet, 61,

64, 71
Remove-Variable cmdlet, 12,

124, 169
Remove-WindowsFeature

cmdlet, 239, 250–252
rename (ren) command, 171
Rename-Computer cmdlet, 12,

107, 396, 398

quotation marks

457

Rename-Item cmdlet, 67, 171,
285, 344

Rename-ItemProperty cmdlet,
70, 345

rendering output, 49–50
replace operator, 114, 120
replication, 241
Reset-ComputerMachinePass-

word cmdlet, 12, 107
Resolve-Path cmdlet, 75
Restart-Computer cmdlet, 12,

100, 107, 396, 402–403
Restart-Service cmdlet, 13, 377
restore points

creating, 403–404,
406–408

recovering from, 408
Restore-Computer cmdlet, 11,

405, 408
Restricted execution policy, 18
Resume-Service cmdlet, 13,

376, 380
rm alias, 169
rmdir alias, 169
rmdir command, 171
role services

adding, 247–248
checking installed,

245–247
cmdlet support, 238–239
component names,

240–242
defined, 237
handling configuration

errors, 249–250
handling removal errors,

252
installing, 247–250
removing, 250–251
Server Manager, 239–242
uninstalling, 250–252

roles
adding, 247–248
checking installed,

245–247
cmdlet support, 238–239
component names,

240–242
defined, 237
handling configuration

errors, 249–250
handling removal errors,

252
installing, 247–250
removing, 250–251

Server Manager, 239–242
uninstalling, 250–252

root CAs, 19
routing, 241
Routing and Remote Access

Services (RRAS), 241
RPC-over-HTTP-Proxy

 component, 244
RRAS (Routing and Remote

Access Services), 241
RSAT (Remote Server Adminis-

tration Tools), 243–244
rv alias, 169

S
sal alias, 169
SAPI.SpVoice ProgID, 198
sasv alias, 169
SC config command, 383–385
SC Failure command, 385, 387
SC Qfailure command, 385
scientific notation, 130
scope, 135–138, 176
script blocks

adding to transactions,
221

creating modules, 61
defined, 29
grouping operators, 111
parsing, 36

script scope, 135, 137
scriptblock data type alias, 127
Scripting.FileSystemObject

ProgID, 198
ScriptMethod extension,

191, 194
ScriptProperty extension,

191–192
scripts

comments, 222–225
common elements,

222–235
conditional statements,

225–231
control loops, 231–235
defined, 17, 213
execution order, 57
execution policy, 17–19
formatting commands,

213
headers in, 223
initialization, 84
initializing statements,

222–225

initializing the environ-
ment, 30

passing arguments, 225
profile support, 214–216
running, 214
saving, 214
setting execution policy,

215
signing, 19–21
snap-in support, 64
storing commands, 101,

105
Switch construct, 229–231
variable scope, 136
variable support, 123

SDDL (Security Descriptor
Definition Language),
290, 348

security descriptors
access rules, 293–295,

350–351, 353
accessing, 289–295
cmdlets for, 289
getting, 289–292
getting for registry,

348–350
setting, 289–292
setting for registry,

348–350
Security log, 101, 104, 363
Select-Object cmdlet, 11, 199
self-signed certificates, 19,

21–23
semicolon (;), 29, 57, 213
Server Manager

cmdlet support, 238–239
features, 242–245,

247–252
functionality, 237–238
role services, 239–242,

247–252
roles, 239–242, 247–252

server roles. See roles
ServerManagerCmd tool,

237–238
service logon, 383–385
service packs, 257–260
service recovery, 385–387
ServiceManager module, 80
services. See system services
sessions. See also remote

sessions
adding, 5
defined, 94
exporting elements, 91

sessions

458

importing elements, 91
importing modules,

61, 81
removing modules, 61, 81
removing snap-ins, 61

set alias, 169
set command, 171
Set-Acl cmdlet, 289, 307,

348–349
Set-Alias cmdlet, 11, 169,

172–174
Set-AuthenticodeSignature

cmdlet, 11, 19
Set-Content cmdlet, 74,

287–288
Set-Date cmdlet, 11, 254, 256
Set-ExecutionPolicy cmdlet,

11, 18
Set-Item cmdlet, 67, 148, 218
Set-ItemProperty cmdlet, 70
setlocal command, 171
Set-Location cmdlet

associated aliases, 169
built-in functions, 182
changing drive working

location, 282
description, 12, 74
example, 76, 147
file system drives, 181
internal commands, 170
switching drives, 283
viewing provider drives, 71

Set-Service cmdlet, 12, 107,
377, 382–383

Setup log, 363
Set-Variable cmdlet, 12, 123,

169, 171
Set-WSManInstance cmdlet, 63
Setx utility, 17, 58, 148
SH (Bourne Shell), 2
share permissions, 309
SharePoint.OpenDocuments

ProgID, 198
shares. See network shares
Shell.Application ProgID, 198
Shell.LocalMachine ProgID, 198
shift command, 171
Show-EventLog cmdlet, 12,

107, 365
Show-Service cmdlet, 12
Shutdown-Computer cmdlet,

402
Simple Mail Transfer Protocol

(SMTP), 244
single data type alias, 127

single-line comments, 222
single-quoted strings, 148–150
sl alias, 169
sleep alias, 169
SMTP (Simple Mail Transfer

Protocol), 244
snap-ins. See Windows

 PowerShell extensions
SNMP Services, 245
sort alias, 169
sorting objects, 43–44
Sort-Object cmdlet

alias support, 126, 169
description, 11
formatting support, 39, 43
sorting event objects, 367

special characters, 76, 150
Split-Path cmdlet, 75
splitting strings, 120, 155–157
spps alias, 169
spsv alias, 169
SQL Server

COM object support, 198
Windows PowerShell

extensions, 62, 64,
82–84

SQL Server PowerShell
 console, 82

SQLDMO.SQLServer ProgID,
198

sqlps command, 83
standard output stream, 45
start command, 171
Start-Job cmdlet

functionality, 98–99
running jobs

 noninteractively, 106
starting background jobs,

100–101
Start-Process cmdlet, 12,

171, 410
Start-Service cmdlet, 13, 169,

376, 380
Start-Sleep cmdlet, 12, 169, 441
Start-Transaction cmdlet,

219–221, 223, 335
Start-Transcript cmdlet, 63, 216
startup process

initializing the
 environment, 26–28

system services, 380–382
statements

#Requires, 224–225
conditional, 225–231
grouping operators, 111

initializing, 222–225
Switch construct, 226

static IP addresses, 319, 323–326
Stop-Computer cmdlet, 12,

100, 107, 396, 403
Stop-Job cmdlet, 98–99
Stop-Process cmdlet, 12, 169,

410, 424–425
Stop-Service cmdlet, 13, 169,

376, 380
Stop-Transaction cmdlet, 335
Stop-Transcript cmdlet, 63,

216, 223
Storage Manager for SANs, 245
strict types in arrays, 164
string data type alias, 127
String object

Contains method, 134
EndsWith method, 134
Insert method, 135
Length property, 134, 188
Remove method, 135
Replace method, 135
StartsWith method, 135
SubString method, 135
ToLower method, 135, 188
ToString method, 135
ToUpper method, 135, 188

string operators, 154–159
strings

accessing values, 122
arithmetic operators, 110
array example, 160
comparison operators,

114, 116, 120, 154
concatenating, 155
converting values, 132
data, 152–154
defined, 148
double-quoted, 148–150
escape codes, 150–152
formatting, 120, 155,

157–159
joining, 120, 155–156
multiline, 152–154
multiplying, 156
referencing in variables,

155
single-quoted, 148–150
special operators,

154–155
splitting, 120, 155–157
variables in, 153
wildcard characters,

150–152

set alias

459

subscribers, 218
subtraction operator, 110,

113, 122
Suspend-Service cmdlet, 13,

376, 380
sv alias, 169
Switch construct

example, 231
flags supported, 230–231
functionality, 226,

229–230
System Configuration utility,

402
system date/time, 254–256
system hardware

checking firmware,
267–268

checking hard disks,
271–275

checking memory,
269–271

checking partitions,
271–275

checking processors,
269–271

evaluating, 267–280
managing device drivers,

275–279
system information

$env-computername, 253
$env-userdomain, 254
$env-username, 254
authentication creden-

tials, 254, 257
computer name, 253–255
current user, 254–255
date and time, 254–256
domain, 254–255
examining configuration,

257–267
getting basic, 253–254
obtaining detailed,

261–267
System log, 101, 104, 363, 368
system processes, 411–412
System Restore

cmdlets for, 404–405
configuring, 404–405
creating checkpoints,

403–404, 406–408
disabling, 406
editing registry and, 335
enabling, 406
recovering from restore

points, 408

system services
configuring recovery,

385–387
configuring startup,

382–383
managing, 375–395
managing logon,

383–385
manipulating, 380–382
recovery modes, 383–387
viewing, 378–380
viewing relationship with

processes, 420–421
System.AppDomain class, 203
System.Array class, 203
System.Console class, 203
System.Convert class, 131, 203
System.Datetime class

functionality, 189, 203
methods/properties,

132–133, 189
System.Diagnostics.Debug

class, 203
System.Diagnostics.EventLog

class, 202–203
System.Diagnostics.Process

class, 189, 203
System.Drawing.Bitmap class,

203
System.Drawing.Image class,

203
System.Environment class,

202–203
System.Guid class, 203
System.IO.Stream class, 203
System.Management.

Automation.Host class, 224
System.Management.

Automation.PowerShell
class, 203

System.Management.
Automation.
TransactedString class,
218–219

System.Math class, 133–134
System.Net.Dns class, 203
System.Net.NetworkCredential

class, 203
System.Net.WebClient class, 204
System.Random class, 204
System.Reflection.Assembly

class, 204
System.Security.Principal.

WellKnownSidType class,
204

System.Security.Principal.
WindowsBuiltInRole class,
204

System.Security.Principal.
WindowsIdentity class, 204

System.Security.Principal.
WindowsPrincipal class, 204

System.Security.SecureString
class, 204

System.String class, 204
System.Text.

RegularExpressions.Regex
class, 204

System.Threading.Thread
class, 204

System.Type class, 204
System.Uri class, 204
System.Windows.Forms class,

206
System.Windows.Forms.

FlowLayoutPanel class, 204
System.Windows.Forms.Form

class, 204
SystemRoot environment

variable, 3

T
tab character, 150
TabExpansion function,

183–185
Task Scheduler, 411
TCP/IP networking

dynamic IP addressing,
326–328

managing, 319–328
network adapters,

319–322
Simple-TCPIP component,

245
static IP addressing, 319,

323–326
Telnet client, 245
Telnet server, 245
terminating errors, 14
Test-Connection cmdlet, 100,

396–397
Test-ModuleManifest cmdlet,

61
Test-Path cmdlet, 75
TFTP client, 245
threads, process, 427–428
three-dimensional arrays, 159
time command, 171
title command, 172

title command

460

token-based agents, 240
Trace-Command cmdlet, 11
transactions

adding commands, 221
adding script blocks, 221
cmdlet support, 218–220
creating, 217–218
defined, 217
functionality, 220–221
performing registry

changes, 335
transcripts, creating, 216
Transport Server, 242
TroubleshootingPack module,

80
trusted publishers, 19
Trusted Root Certification

Authorities, 19
TrustedHosts configuring

setting, 86
TXT file extension, 370
type alias, 168
type command, 172
type operators, 109, 121
Types.ps1xml, 190

U
UDDI (Universal Description,

Discovery, and Integration),
244

underscore (_), 125
Undo-Transaction cmdlet,

219, 221
Universal Description,

Discovery, and Integration
(UDDI), 244

Universal Naming Convention,
385

Unregister-Event cmdlet, 365
Unrestricted execution policy,

18
untrusted publishers, 19
Update-FormatData cmdlet,

39
user accounts

audit rules, 305
determining availability,

265–267
listing, 258
registry permissions, 352
remote commands

and, 88
user processes, 411–412

user-created variables, 54, 123
Use-Transaction cmdlet,

219, 221

V
values. See also registry values

accessing in variables, 125
assigning to arrays,

163–164
assigning to strings, 155
comparison operators,

115–117
converting to strings, 132
defined, 122
examining in scripts, 225
managing data types,

128–135
parsing, 34–36
removing from arrays,

163–164
setting for parameters, 179

Variable provider, 63, 65
variable scope, 135–138
variables. See also automatic

variables
accessing values, 125
assigning values, 34–35,

126
cmdlet support, 123–124
creating profiles, 55
defined, 54, 122
defining, 123–125
environment, 54, 123,

138, 147–148
in strings, 153
listing available, 125
managing data types,

128–135
managing scope,

135–138
naming considerations,

125–126
preference, 54, 123, 138,

143–146
profile support, 123, 214
referencing, 124–125
referencing strings, 155
script support, 123
storing expression results,

127–128
storing job objects, 102
user-created, 54, 123

verbose message stream, 45

verify command, 172
virtualization, 242
vol command, 172

W
Wait-Event cmdlet, 365
Wait-Job cmdlet, 99
Wait-Process cmdlet, 13, 410
WAN (Wide Area Network),

319
warning message stream, 45
WDS (Windows Deployment

Services), 242, 244
Web agents, 240
Web Server (IIS), 244
WebAdministration module,

80–81
Where-Object cmdlet,

140–141, 176, 310, 315, 368
While loops, 231, 234–235
Wide Area Network (WAN), 319
wildcard characters

accessing file content,
288

comparison operators,
116

environment variables,
147

in name values, 15
in strings, 150–152
listing functions, 181
listing specific

commands, 13
reviewing component

subsets, 247
Win32_BaseBoard class (WMI),

209
Win32_BIOS class (WMI),

209, 267
Win32_BootConfiguration

class (WMI), 209
Win32_CacheMemory class

(WMI), 209
Win32_CDROMDrive class

(WMI), 209
Win32_ComputerSystem class

(WMI), 209, 258, 261, 263
Win32_Desktop class (WMI),

209
Win32_DesktopMonitor class

(WMI), 209
Win32_DiskDrive class (WMI),

209, 271

token-based agents

461

Win32_DiskPartition class
(WMI), 209, 273

Win32_DiskQuota class (WMI),
209

Win32_Environment class
(WMI), 209

Win32_Group class (WMI),
258, 265

Win32_LogicalDisk class
(WMI), 209, 274

Win32_LogonSession class
(WMI), 209

Win32_NetworkAdapter class
(WMI), 209, 320–321

Win32_NetworkAdapter-
Configuration class (WMI),
209, 320, 323–324,
326–328

Win32_NetworkConnection
class (WMI), 209

Win32_OperatingSystem
class (WMI), 207, 209, 258,
261–263

Win32_OSRecovery-
Configuration class
(WMI), 210

Win32_PageFileUsage class
(WMI), 210

Win32_PhysicalMemory class
(WMI), 210, 269

Win32_PhysicalMemoryArray
class (WMI), 210, 270

Win32_Printer class (WMI),
210, 315

Win32_PrinterConfiguration
class (WMI), 210

Win32_PrintJob class (WMI),
210

Win32_Process class (WMI),
411, 425, 427–429

Win32_Processor class (WMI),
210, 270

Win32_QuickFixEngineeering
class (WMI), 210

Win32_Registry class (WMI),
210

Win32_SCSIController class
(WMI), 210

Win32_Service class (WMI)
description, 210
examining relationships,

420–421
manipulating services,

380, 388, 390–392
system performance, 411

Win32_Share class (WMI)
Create method, 313
delete method, 314
description, 210
Description property, 311
MaxAllow property, 311
setShareInfo method,

311–313
viewing shares, 310

Win32_SoundDevice class
(WMI), 210

Win32_SystemDriver class
(WMI), 276–279

Win32_TcpIpPrinterPort class
(WMI), 316

Win32_UserAccount class
(WMI), 258, 265

Windows 7, 85
Windows Deployment Services

(WDS), 242, 244
Windows Explorer, 198–199
Windows Firewall

adding firewall ports,
333–334

COM object support, 197
configuring, 328–334
managing settings,

328–333
removing firewall ports,

333–334
viewing settings, 328–333

Windows Internal DB, 245
Windows Internet Naming

Service (WINS), 244
Windows logs, 362
Windows Management

Instrumentation. See WMI
(Windows Management
Instrumentation)

Windows Media Player, 198
Windows Media Server 2008,

238
Windows Memory Diagnostics

utility, 270
Windows PowerShell

command history buffer,
8–9

execution environments, 5
functionality, 2
invoking, 28
processing modes, 4
running, 3–9
starting, 26
starting as administrator,

87

Windows PowerShell console
basic line editing, 31–33
configuring properties,

7–8
depicted, 4, 8
exiting, 4, 27
functionality, 3–4
initializing, 223
invoking, 27–28
nested, 30
Properties dialog box,

194–197
resizing, 224
ServerManager module,

237–238
starting, 3, 62

Windows PowerShell
extensions

adding snap-ins, 60, 64
built-in snap-ins, 62–63
cmdlet support, 60–61
defined, 60, 62
Exchange Server, 62,

82–84
exporting snap-ins, 60
functionality, 62–64
modules, 60, 77–81
navigating, 72–77
provider drives, 72–77
providers, 61, 64–72
registering snap-ins, 61
removing snap-ins, 61,

64, 71
SQL Server, 62, 64, 82–84
verifying snap-ins, 225

Windows PowerShell ISE
changing text size, 7
Command pane, 5
depicted, 5
exiting, 7
functionality, 5–7
Output pane, 5
repositioning panes, 5
Script pane, 5
script support, 213
starting, 5

Windows PowerShell log, 363
Windows Remote Manage-

ment service. See WinRM
service

Windows Script Host (WSH),
197, 318

Windows Search service, 241,
420

Windows Server 2003, 3, 241

Windows Server 2003

462

Windows Server 2008
managing printers, 314
remoting support, 85
Server Manager support,

238
Windows PowerShell

console, 3
Windows Server Update

Services (WSUS), 242
Windows SharePoint Server

2008, 238
Windows System Resource

Manager (WSRM), 245
Windows systems. See

 Microsoft Windows systems
Windows Updates, 258–260
Windows Vista

remoting support, 85, 92
SETX utility, 17
Windows PowerShell

console, 3
Windows XP, 3, 328
WinRM service

enabling remote
 commands, 85–87

establishing remote back-
ground jobs, 97–106

establishing remote
 sessions, 94–97

example, 40
executing remote

 commands, 87–93
GetWinRm function, 214
Status property, 86
verifying availability,

85–86

WINS (Windows Internet
Naming Service), 244

WINS Server, 245
wireless networking, 245
WMI (Windows Management

Instrumentation)
cmdlet support, 100
object support, 206–211
overview, 206
PSObject support, 191
query support, 206–211

wmi data type alias, 127
WMI Query Language, 207
wmiclass alias, 313
WMPlayer.OCX ProgID, 198
Word.Application ProgID, 198
Word.Document ProgID, 198
workgroups

adding computers,
400–401

HTTPS support, 86
remote commands, 93
removing computers,

401–402
working environment

environment variables,
254

examining, 257–267
loading, 53
minishells, 82
profile support, 215
remote sessions, 53, 94
restoring, 218

working memory set, 440–443
write alias, 169
Write-Debug cmdlet, 48–49

Write-Error cmdlet, 48–49
Write-EventLog cmdlet,

11, 107
Write-Host cmdlet

description, 12, 46
displaying strings, 150
formatting options, 46
module support, 63
parsing exceptions, 36

Write-Output cmdlet, 13,
46–47, 169–170

Write-Verbose cmdlet,
48–49

Write-Warning cmdlet, 13,
48–49

writing
custom events, 371–373
file content, 288
to output streams,

45–49
WScript.Network object, 318
WSH (Windows Script Host),

197, 318
WSMan provider, 65, 72
WSMan.Format.ps1xml, 190
WSRM (Windows System

Resource Manager), 245
WSUS (Windows Server

 Update Services), 242

X
xml data type alias, 127
XML file extension, 370
XPath queries, 374
XPS Viewer, 245

Windows Server 2008

About the Author

William R. Stanek (http://www.williamstanek.com) has over 20 years of hands-on
experience with advanced programming and development. He is a leading
 technology expert, an award-winning author, and a pretty-darn-good instructional
trainer. Over the years, his practical advice has helped millions of programmers,
developers, and network engineers all over the world. He has written more than
100 books. Current or forthcoming books include Active Directory Administrator’s
Pocket Consultant, Windows Group Policy Administrator’s Pocket Consultant,
 Windows 7 Administrator’s Pocket Consultant, and Windows Server 2008 Inside Out.

William has been involved in the commercial Internet community since 1991. His
core business and technology experience comes from more than 11 years of military
service. He has substantial experience in developing server technology, encryption,
and Internet solutions. He has written many technical white papers and training
courses on a wide variety of topics. He frequently serves as a subject matter expert
and consultant.

William has an MS with distinction in information systems and a BS in computer
science, magna cum laude. He is proud to have served in the Persian Gulf War as
a combat crew member on an electronic warfare aircraft. He flew on numerous
combat missions into Iraq and was awarded nine medals for his wartime service,
including one of the United States of America’s highest flying honors, the Air Force
Distinguished Flying Cross. Currently, he resides in the Pacific Northwest with his
wife and children.

William recently rediscovered his love of the great outdoors. When he’s not writing,
teaching, or making presentations, he can be found hiking, biking, backpacking,
traveling, or trekking in search of adventure.

Follow William on Twitter at WilliamStanek.

	Contents at a Glance
	Contents
	Introduction
	Who Is This Book For?
	How Is This Book Organized?
	Conventions Used in This Book
	Find Additional Content Online
	Support

	Chapter 1: Introducing Windows PowerShell
	Getting Started with Windows PowerShell
	Running Windows PowerShell
	Using the Windows PowerShell Console
	Using the Windows PowerShell ISE
	Configuring Windows PowerShell Console Properties
	Working with the Command History

	Working with Cmdlets and Scripts
	Using Cmdlets
	Using Cmdlet Parameters
	Using External Commands
	Using Scripts

	Chapter 2: Getting the Most from Windows PowerShell
	Initializing the Environment
	Passing Startup Parameters
	Invoking Windows PowerShell
	Using –Command to Run Commands
	Using –File to Run Scripts
	Using Nested Consoles

	Understanding Command Input, Parsing, and Output
	Basic Line Editing
	How Parsing Works
	Parsing Assigned Values
	Parsing Exceptions
	Output from Parsing

	Writing and Formatting Output
	Using Formatting Cmdlets
	Writing to Output Streams
	Rendering and Finalizing the Output
	More on Redirecting Input, Output, and Error

	Chapter 3: Managing Your Windows PowerShell Environment
	Using Profiles
	Creating Profiles
	Understanding Execution Order
	Working with the Command Path

	Navigating Windows PowerShell Extensions
	Working with Windows PowerShell Extensions
	Using Snap-ins
	Using Providers
	Navigating and Using Provider Drives
	Using Modules
	PowerShell Extensions for Exchange Server and SQL Server

	Chapter 4: Using Sessions, Jobs, and Remoting
	Enabling Remote Commands
	Executing Remote Commands
	Understanding Remote Execution
	Commands for Remoting
	Invoking Remote Commands

	Establishing Remote Sessions
	Invoking Sessions
	Understanding Remote Execution and Object Serialization

	Establishing Remote Background Jobs
	Using Background Jobs
	Starting Jobs in Interactive Sessions
	Running Jobs Noninteractively

	Working Remotely Without WinRM

	Chapter 5: Navigating Core Windows PowerShell Structures
	Working with Expressions and Operators
	Arithmetic, Grouping, and Assignment Operators
	Comparison Operators
	Other Operators

	Working with Variables and Values
	Variable Essentials
	Assigning and Converting Data Types
	Managing Variable Scopes
	Automatic, Preference, and Environment Variables

	Working with Strings
	Single-Quoted and Double-Quoted Strings
	Escape Codes and Wildcards
	Multiline Strings
	String Operators

	Working with Arrays and Collections
	Creating and Using One-Dimensional Arrays
	Using the Cast Array Structure
	Assigning and Removing Values
	Using Strict Types in Arrays
	Using Multidimensional Arrays

	Chapter 6: Mastering Aliases, Functions, and Objects
	Creating and Using Aliases
	Using the Built-In Aliases
	Creating Aliases
	Importing and Exporting Aliases

	Creating and Using Functions
	Creating Functions
	Using Extended Functions
	Using Filter Functions
	Digging Deeper into Functions
	Examining Function Definitions
	Using the Built-In Functions

	Working with Objects
	Object Essentials
	Object Methods and Properties
	Object Types
	Digging Deeper into Objects

	Working with COM and .NET Framework Objects
	Creating and Using COM Objects
	Working with .NET Framework Classes and Objects

	Working with WMI Objects and Queries

	Chapter 7: Managing Computers with Commands and Scripts
	Getting More from Your Scripts and Profiles
	Creating Transcripts
	Creating Transactions
	Understanding Transactions
	Using Transactions

	Common Elements in Scripts
	Using Comments and Initializing Statements
	Using Conditional Statements
	Using Control Loops

	Chapter 8: Managing Roles, Role Services, and Features
	Server Manager Essentials
	Server Manager Commands
	Available Roles and Role Services
	Available Features

	Checking Installed Roles, Role Services, and Features
	Installing Roles, Role Services, and Features
	Adding Roles, Role Services, and Features
	Handling Configuration Errors and Other Issues

	Uninstalling Roles, Role Services, and Features
	Removing Roles, Role Services, and Features
	Handling Removal Errors and Other Issues

	Chapter 9: Inventorying and Evaluating Windows Systems
	Getting Basic System Information
	Determining the Current User, Domain, and Computer Name
	Determining and Setting the Date and Time
	Specifying Authentication Credentials

	Examining the System Configuration and the Working Environment
	Determining Windows Updates and Service Packs
	Obtaining Detailed System Information
	Determining Available Users and Groups

	Evaluating System Hardware
	Checking Firmware Versions and Status
	Checking Physical Memory and Processors
	Checking Hard Disks and Partitions
	Checking and Managing Device Drivers
	Digging In Even More

	Chapter 10: Managing File Systems, Security, and Auditing
	Managing PowerShell Drives, Directories, and Files
	Adding and Removing PowerShell Drives
	Creating and Managing Directories and Files

	Working with File Contents
	Commands for Managing File Contents
	Reading and Writing File Content

	Accessing Security Descriptors
	Commands for Working with Security Descriptors
	Getting and Setting Security Descriptors
	Working with Access Rules

	Configuring File and Directory Permissions
	Setting Basic Permissions
	Setting Special Permissions
	Taking Ownership

	Configuring File and Directory Auditing

	Chapter 11: Managing Shares, Printers, and TCP/IP Networking
	Managing Network Shares
	Getting Information About Shares
	Changing Share Settings
	Creating Shares
	Deleting Shares

	Managing Printers
	Getting Information About Printers
	Checking Printer Drivers
	Managing Printer Connections

	Managing TCP/IP Networking
	Getting Information About Network Adapters
	Configuring Static IP Addressing
	Configuring Dynamic IP Addressing

	Configuring Windows Firewall
	Viewing and Managing Windows Firewall Settings
	Adding and Removing Firewall Ports

	Chapter 12: Managing and Securing the Registry
	Understanding Registry Keys and Values
	Navigating the Registry
	Managing Registry Keys and Values
	Creating Registry Keys and Values
	Copying Registry Keys and Values
	Moving Registry Keys and Values
	Renaming Registry Keys and Values
	Deleting Registry Keys and Values

	Comparing Registry Keys
	Viewing and Managing Registry Security Settings
	Getting and Setting Registry Security Descriptors
	Working with Registry Access Rules
	Configuring Registry Permissions
	Taking Ownership of Registry Keys

	Auditing the Registry

	Chapter 13: Monitoring and Optimizing Windows Systems
	Managing Windows Events and Logs
	Working with Event Logs
	Viewing and Filtering Event Logs
	Setting Log Options
	Archiving and Clearing Event Logs
	Writing Custom Events to the Event Logs
	Creating and Using Saved Queries

	Managing System Services
	Viewing Configured Services
	Starting, Stopping, and Pausing Services
	Configuring Service Startup
	Managing Service Logon and Recovery Modes
	Digging Deeper into Service Management

	Managing Computers
	Commands for Managing Computers
	Renaming Computer Accounts
	Joining Computers to a Domain
	Adding Computers to a Workgroup
	Removing Computers from Domains and Workgroups
	Managing the Restart and Shutdown of Computers

	Creating and Using System Restore Checkpoints
	Commands for Configuring System Restore
	Enabling and Disabling System Restore
	Creating and Using Checkpoints
	Recovering from Restore Points

	Chapter 14: Fine-Tuning System Performance
	Managing Applications, Processes, and Performance
	Understanding System and User Processes
	Examining Running Processes
	Filtering Process Output
	Viewing the Relationship Between Running Processes and Services
	Viewing Lists of DLLs Being Used by Processes
	Stopping Processes
	Digging Deeper into Processes

	Performance Monitoring
	Understanding Performance Monitoring Commands
	Tracking Performance Data

	Detecting and Resolving Performance Issues Through Monitoring
	Monitoring System Resource Usage and Processes
	Monitoring Memory Paging and Paging to Disk
	Monitoring Memory Usage and the Working Memory Set for Individual Processes

	Index
	About the Author
	William R. Stanek

